Tian, Yi Variational principle for some nonlinear problems. (English) Zbl 07489147 GEM. Int. J. Geomath. 13, Paper No. 4, 19 p. (2022). MSC: 65-XX 35A15 35M12 PDF BibTeX XML Cite \textit{Y. Tian}, GEM. Int. J. Geomath. 13, Paper No. 4, 19 p. (2022; Zbl 07489147) Full Text: DOI
Jaradat, Imad; Alquran, Marwan; Sivasundaram, Seenith; Baleanu, Dumitru Simulating the joint impact of temporal and spatial memory indices via a novel analytical scheme. (English) Zbl 1518.65118 Nonlinear Dyn. 103, No. 3, 2509-2524 (2021). MSC: 65M70 26A33 34A25 35R11 PDF BibTeX XML Cite \textit{I. Jaradat} et al., Nonlinear Dyn. 103, No. 3, 2509--2524 (2021; Zbl 1518.65118) Full Text: DOI
Yang, Yanping; Saleem, Muhammad Shoaib; Nazeer, Waqas; Shah, Ahsan Fareed New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. (English) Zbl 1509.26022 AIMS Math. 6, No. 11, 12260-12278 (2021). MSC: 26D15 26A33 26A51 26E50 PDF BibTeX XML Cite \textit{Y. Yang} et al., AIMS Math. 6, No. 11, 12260--12278 (2021; Zbl 1509.26022) Full Text: DOI
Goyal, Manish; Baskonus, Haci Mehmet A reliable solution of arbitrary order nonlinear Hunter-Saxton equation with time dependent derivative in Liouville-Caputo sense. (English) Zbl 07490136 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 125, 10 p. (2021). MSC: 65Mxx PDF BibTeX XML Cite \textit{M. Goyal} and \textit{H. M. Baskonus}, Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 125, 10 p. (2021; Zbl 07490136) Full Text: DOI
Bhardwaj, Vinod Kumar; Goyal, Manish A reliable solution of nonlinear time dependent fractional model of ebola virus disease with arbitrary order derivative in Liouville-Caputo sense. (English) Zbl 1486.92203 Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 257, 16 p. (2021). MSC: 92D30 34A08 PDF BibTeX XML Cite \textit{V. K. Bhardwaj} and \textit{M. Goyal}, Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 257, 16 p. (2021; Zbl 1486.92203) Full Text: DOI
Mohammed, Pshtiwan Othman; Abdeljawad, Thabet; Baleanu, Dumitru; Kashuri, Artion; Hamasalh, Faraidun; Agarwal, Praveen New fractional inequalities of Hermite-Hadamard type involving the incomplete gamma functions. (English) Zbl 1503.26029 J. Inequal. Appl. 2020, Paper No. 263, 16 p. (2020). MSC: 26D07 33B20 PDF BibTeX XML Cite \textit{P. O. Mohammed} et al., J. Inequal. Appl. 2020, Paper No. 263, 16 p. (2020; Zbl 1503.26029) Full Text: DOI
Prathumwan, Din; Trachoo, Kamonchat On the solution of two-dimensional fractional Black-Scholes equation for European put option. (English) Zbl 1482.91206 Adv. Difference Equ. 2020, Paper No. 146, 9 p. (2020). MSC: 91G20 91G60 26A33 35R11 PDF BibTeX XML Cite \textit{D. Prathumwan} and \textit{K. Trachoo}, Adv. Difference Equ. 2020, Paper No. 146, 9 p. (2020; Zbl 1482.91206) Full Text: DOI
Jaradat, Imad; Alquran, Marwan; Katatbeh, Qutaibeh; Yousef, Feras; Momani, Shaher; Baleanu, Dumitru An avant-garde handling of temporal-spatial fractional physical models. (English) Zbl 07201332 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 2, 183-194 (2020). MSC: 26A33 34A25 35R11 PDF BibTeX XML Cite \textit{I. Jaradat} et al., Int. J. Nonlinear Sci. Numer. Simul. 21, No. 2, 183--194 (2020; Zbl 07201332) Full Text: DOI
Hong, Baojian; Lu, Dianchen; Chen, Wei Exact and approximate solutions for the fractional Schrödinger equation with variable coefficients. (English) Zbl 1459.35377 Adv. Difference Equ. 2019, Paper No. 370, 10 p. (2019). MSC: 35R11 26A33 35A35 PDF BibTeX XML Cite \textit{B. Hong} et al., Adv. Difference Equ. 2019, Paper No. 370, 10 p. (2019; Zbl 1459.35377) Full Text: DOI
Wang, Hu; Gu, Yajuan; Yu, Yongguang Numerical solution of fractional-order time-varying delayed differential systems using Lagrange interpolation. (English) Zbl 1439.34072 Nonlinear Dyn. 95, No. 1, 809-822 (2019). MSC: 34K37 65D05 PDF BibTeX XML Cite \textit{H. Wang} et al., Nonlinear Dyn. 95, No. 1, 809--822 (2019; Zbl 1439.34072) Full Text: DOI
Sontakke, Bhausaheb R.; Shelke, Abhijeet S.; Shaikh, Amjad S. Solution of non-linear fractional differential equations by variational iteration method and applications. (English) Zbl 1425.35225 Far East J. Math. Sci. (FJMS) 110, No. 1, 113-129 (2019). MSC: 35R11 35C05 PDF BibTeX XML Cite \textit{B. R. Sontakke} et al., Far East J. Math. Sci. (FJMS) 110, No. 1, 113--129 (2019; Zbl 1425.35225) Full Text: DOI
Anjum, Naveed; He, Ji-Huan Laplace transform: making the variational iteration method easier. (English) Zbl 1414.34014 Appl. Math. Lett. 92, 134-138 (2019). MSC: 34A45 44A10 34C15 PDF BibTeX XML Cite \textit{N. Anjum} and \textit{J.-H. He}, Appl. Math. Lett. 92, 134--138 (2019; Zbl 1414.34014) Full Text: DOI
Sun, Jianshe Analytical approximate solutions of \((n + 1)\)-dimensional fractal Harry Dym equations. (English) Zbl 1433.26008 Fractals 26, No. 6, Article ID 1850094, 15 p. (2018). MSC: 26A33 44A99 28A80 PDF BibTeX XML Cite \textit{J. Sun}, Fractals 26, No. 6, Article ID 1850094, 15 p. (2018; Zbl 1433.26008) Full Text: DOI
Chang, Shih-Hsiang Convergence of variational iteration method applied to two-point diffusion problems. (English) Zbl 1471.65097 Appl. Math. Modelling 40, No. 15-16, 6805-6810 (2016). MSC: 65L99 65L20 65L70 34A45 PDF BibTeX XML Cite \textit{S.-H. Chang}, Appl. Math. Modelling 40, No. 15--16, 6805--6810 (2016; Zbl 1471.65097) Full Text: DOI
Zhang, Yu; Yang, Xiao-Jun An efficient analytical method for solving local fractional nonlinear PDEs arising in mathematical physics. (English) Zbl 1446.35260 Appl. Math. Modelling 40, No. 3, 1793-1799 (2016). MSC: 35R11 26A33 65M99 35Q49 35Q84 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{X.-J. Yang}, Appl. Math. Modelling 40, No. 3, 1793--1799 (2016; Zbl 1446.35260) Full Text: DOI
Wang, Kangle; Liu, Sanyang Analytical study of time-fractional Navier-Stokes equation by using transform methods. (English) Zbl 1419.35230 Adv. Difference Equ. 2016, Paper No. 61, 12 p. (2016). MSC: 35R11 26A33 45G10 PDF BibTeX XML Cite \textit{K. Wang} and \textit{S. Liu}, Adv. Difference Equ. 2016, Paper No. 61, 12 p. (2016; Zbl 1419.35230) Full Text: DOI
Zhou, Guanglu; Wu, Boying; Ji, Wen; Rho, Seungmin Time- or space-dependent coefficient recovery in parabolic partial differential equation for sensor array in the biological computing. (English) Zbl 1394.65094 Math. Probl. Eng. 2015, Article ID 573932, 9 p. (2015). MSC: 65M32 92B05 PDF BibTeX XML Cite \textit{G. Zhou} et al., Math. Probl. Eng. 2015, Article ID 573932, 9 p. (2015; Zbl 1394.65094) Full Text: DOI
Samaee, S. S.; Yazdanpanah, O.; Ganji, D. D.; Mofidi, A. A. Analytical solution for a suspension bridge by applying HPM and VIM. (English) Zbl 1325.74123 Int. J. Comput. Math. 92, No. 4, 782-801 (2015). MSC: 74Q10 74K10 44A10 74H45 PDF BibTeX XML Cite \textit{S. S. Samaee} et al., Int. J. Comput. Math. 92, No. 4, 782--801 (2015; Zbl 1325.74123) Full Text: DOI
Chen, Li; Zhao, Yang; Jafari, Hossein; Tenreiro Machado, J. A.; Yang, Xiao-Jun Local fractional variational iteration method for local fractional Poisson equations in two independent variables. (English) Zbl 1468.35228 Abstr. Appl. Anal. 2014, Article ID 484323, 7 p. (2014). MSC: 35R11 PDF BibTeX XML Cite \textit{L. Chen} et al., Abstr. Appl. Anal. 2014, Article ID 484323, 7 p. (2014; Zbl 1468.35228) Full Text: DOI
Zhao, Yongxiang; Xiao, Aiguo; Li, Li; Zhang, Chengjian Variational iteration method for singular perturbation initial value problems with delays. (English) Zbl 1407.65088 Math. Probl. Eng. 2014, Article ID 850343, 8 p. (2014). MSC: 65L99 34K07 PDF BibTeX XML Cite \textit{Y. Zhao} et al., Math. Probl. Eng. 2014, Article ID 850343, 8 p. (2014; Zbl 1407.65088) Full Text: DOI
Zhou, Guanglu; Wu, Boying Identifying a time-dependent heat source with nonlocal boundary and overdetermination conditions by the variational iteration method. (English) Zbl 1357.65165 Int. J. Numer. Methods Heat Fluid Flow 24, No. 7, 1545-1552 (2014). MSC: 65M32 PDF BibTeX XML Cite \textit{G. Zhou} and \textit{B. Wu}, Int. J. Numer. Methods Heat Fluid Flow 24, No. 7, 1545--1552 (2014; Zbl 1357.65165) Full Text: DOI
Liu, Hong-Yan; He, Ji-Huan; Li, Zheng-Biao Fractional calculus for nanoscale flow and heat transfer. (English) Zbl 1356.80018 Int. J. Numer. Methods Heat Fluid Flow 24, No. 6, 1227-1250 (2014). MSC: 80A20 35R11 35Q79 PDF BibTeX XML Cite \textit{H.-Y. Liu} et al., Int. J. Numer. Methods Heat Fluid Flow 24, No. 6, 1227--1250 (2014; Zbl 1356.80018) Full Text: DOI
He, Ji-Huan A tutorial review on fractal spacetime and fractional calculus. (English) Zbl 1312.83028 Int. J. Theor. Phys. 53, No. 11, 3698-3718 (2014). Reviewer: Hans-Jürgen Schmidt (Potsdam) MSC: 83D05 28A80 PDF BibTeX XML Cite \textit{J.-H. He}, Int. J. Theor. Phys. 53, No. 11, 3698--3718 (2014; Zbl 1312.83028) Full Text: DOI
Su, Wei-Hua; Yang, Xiao-Jun; Jafari, H.; Baleanu, Dumitru Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator. (English) Zbl 1380.35163 Adv. Difference Equ. 2013, Paper No. 97, 8 p. (2013). MSC: 35R11 35A22 35L05 PDF BibTeX XML Cite \textit{W.-H. Su} et al., Adv. Difference Equ. 2013, Paper No. 97, 8 p. (2013; Zbl 1380.35163) Full Text: DOI
Abdel-Salam, Emad A.-B.; Yousif, Eltayeb A. Solution of nonlinear space-time fractional differential equations using the fractional Riccati expansion method. (English) Zbl 1299.35057 Math. Probl. Eng. 2013, Article ID 846283, 6 p. (2013). MSC: 35C05 35R11 35B10 35L71 35Q53 PDF BibTeX XML Cite \textit{E. A. B. Abdel-Salam} and \textit{E. A. Yousif}, Math. Probl. Eng. 2013, Article ID 846283, 6 p. (2013; Zbl 1299.35057) Full Text: DOI
Su, Wei-Hua; Baleanu, Dumitru; Yang, Xiao-Jun; Jafari, Hossein Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. (English) Zbl 1291.74083 Fixed Point Theory Appl. 2013, Paper No. 89, 11 p. (2013). MSC: 74H10 35L05 28A80 PDF BibTeX XML Cite \textit{W.-H. Su} et al., Fixed Point Theory Appl. 2013, Paper No. 89, 11 p. (2013; Zbl 1291.74083) Full Text: DOI
Xu, Lan; Lee, Eric W. M. Variational iteration method for the magnetohydrodynamic flow over a nonlinear stretching sheet. (English) Zbl 1328.76052 Abstr. Appl. Anal. 2013, Article ID 573782, 5 p. (2013). MSC: 76M25 65N99 76W05 PDF BibTeX XML Cite \textit{L. Xu} and \textit{E. W. M. Lee}, Abstr. Appl. Anal. 2013, Article ID 573782, 5 p. (2013; Zbl 1328.76052) Full Text: DOI
Liu, Jincun; Li, Hong Approximate analytic solutions of time-fractional Hirota-Satsuma coupled KdV equation and coupled MKdV equation. (English) Zbl 1275.65069 Abstr. Appl. Anal. 2013, Article ID 561980, 11 p. (2013). MSC: 65M99 35Q53 35R11 35C10 PDF BibTeX XML Cite \textit{J. Liu} and \textit{H. Li}, Abstr. Appl. Anal. 2013, Article ID 561980, 11 p. (2013; Zbl 1275.65069) Full Text: DOI
Yang, Yong-Ju; Baleanu, Dumitru; Yang, Xiao-Jun A local fractional variational iteration method for Laplace equation within local fractional operators. (English) Zbl 1273.65158 Abstr. Appl. Anal. 2013, Article ID 202650, 6 p. (2013). MSC: 65M99 35R11 PDF BibTeX XML Cite \textit{Y.-J. Yang} et al., Abstr. Appl. Anal. 2013, Article ID 202650, 6 p. (2013; Zbl 1273.65158) Full Text: DOI
Jafarian, A.; Ghaderi, P.; Golmankhaneh, Alireza K.; Baleanu, D. Analytic solution for a nonlinear problem of magneto-thermoelasticity. (English) Zbl 1274.74062 Rep. Math. Phys. 71, No. 3, 399-411 (2013). MSC: 74B20 74F05 74F15 74H10 PDF BibTeX XML Cite \textit{A. Jafarian} et al., Rep. Math. Phys. 71, No. 3, 399--411 (2013; Zbl 1274.74062) Full Text: DOI Link
Liu, Hongliang; Xiao, Aiguo; Su, Lihong Convergence of variational iteration method for second-order delay differential equations. (English) Zbl 1266.65102 J. Appl. Math. 2013, Article ID 634670, 9 p. (2013). MSC: 65K10 34K20 34K28 PDF BibTeX XML Cite \textit{H. Liu} et al., J. Appl. Math. 2013, Article ID 634670, 9 p. (2013; Zbl 1266.65102) Full Text: DOI
Song, Junqiang; Yin, Fukang; Cao, Xiaoqun; Lu, Fengshun Fractional variational iteration method versus Adomian’s decomposition method in some fractional partial differential equations. (English) Zbl 1266.35141 J. Appl. Math. 2013, Article ID 392567, 10 p. (2013). MSC: 35R11 35A15 PDF BibTeX XML Cite \textit{J. Song} et al., J. Appl. Math. 2013, Article ID 392567, 10 p. (2013; Zbl 1266.35141) Full Text: DOI
He, Ji-Huan An approximation to solution of space and time fractional telegraph equations by the variational iteration method. (An aproximation to solution of space and time fractional telegraph equations by the variational iteration method.) (English) Zbl 1264.65172 Math. Probl. Eng. 2012, Article ID 394212, 2 p. (2012). MSC: 65M99 34A08 45K05 PDF BibTeX XML Cite \textit{J.-H. He}, Math. Probl. Eng. 2012, Article ID 394212, 2 p. (2012; Zbl 1264.65172) Full Text: DOI
Badr, Abdallah A. Finite element method for linear multiterm fractional differential equations. (English) Zbl 1264.65120 J. Appl. Math. 2012, Article ID 482890, 9 p. (2012). MSC: 65L60 34A08 PDF BibTeX XML Cite \textit{A. A. Badr}, J. Appl. Math. 2012, Article ID 482890, 9 p. (2012; Zbl 1264.65120) Full Text: DOI
He, Ji-Huan Asymptotic methods for solitary solutions and compactons. (English) Zbl 1257.35158 Abstr. Appl. Anal. 2012, Article ID 916793, 130 p. (2012). MSC: 35Q51 35C08 35R11 35-01 PDF BibTeX XML Cite \textit{J.-H. He}, Abstr. Appl. Anal. 2012, Article ID 916793, 130 p. (2012; Zbl 1257.35158) Full Text: DOI
Hu, Ming-Sheng; Agarwal, Ravi P.; Yang, Xiao-Jun Local fractional Fourier series with application to wave equation in fractal vibrating string. (English) Zbl 1257.35193 Abstr. Appl. Anal. 2012, Article ID 567401, 15 p. (2012). MSC: 35R11 33E12 81Q35 PDF BibTeX XML Cite \textit{M.-S. Hu} et al., Abstr. Appl. Anal. 2012, Article ID 567401, 15 p. (2012; Zbl 1257.35193) Full Text: DOI
Maleki, Mohammad; Hashim, Ishak; Kajani, Majid Tavassoli; Abbasbandy, Saeid An adaptive pseudospectral method for fractional order boundary value problems. (English) Zbl 1261.34009 Abstr. Appl. Anal. 2012, Article ID 381708, 19 p. (2012). MSC: 34A08 34B15 PDF BibTeX XML Cite \textit{M. Maleki} et al., Abstr. Appl. Anal. 2012, Article ID 381708, 19 p. (2012; Zbl 1261.34009) Full Text: DOI
He, Ji-Huan A remark on “A nonlinear mathematical model of the corneal shape”. (English) Zbl 1257.34010 Nonlinear Anal., Real World Appl. 13, No. 6, 2863-2865 (2012). MSC: 34A45 34B60 34A25 92C05 PDF BibTeX XML Cite \textit{J.-H. He}, Nonlinear Anal., Real World Appl. 13, No. 6, 2863--2865 (2012; Zbl 1257.34010) Full Text: DOI
Elbeleze, Asma Ali; Kiliçman, Adem; Taib, Bachok M. Application of homotopy perturbation and variational iteration methods for Fredholm integrodifferential equation of fractional order. (English) Zbl 1253.65201 Abstr. Appl. Anal. 2012, Article ID 763139, 14 p. (2012). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{A. A. Elbeleze} et al., Abstr. Appl. Anal. 2012, Article ID 763139, 14 p. (2012; Zbl 1253.65201) Full Text: DOI
Sweilam, N. H.; Khader, M. M.; Mahdy, A. M. S. Numerical studies for fractional-order logistic differential equation with two different delays. (English) Zbl 1251.65118 J. Appl. Math. 2012, Article ID 764894, 14 p. (2012). MSC: 65L99 34A08 PDF BibTeX XML Cite \textit{N. H. Sweilam} et al., J. Appl. Math. 2012, Article ID 764894, 14 p. (2012; Zbl 1251.65118) Full Text: DOI
Nofal, Taher A. Approximate solutions for nonlinear initial value problems using the modified variational iteration method. (English) Zbl 1251.65148 J. Appl. Math. 2012, Article ID 370843, 19 p. (2012). MSC: 65M99 35Q55 35Q53 PDF BibTeX XML Cite \textit{T. A. Nofal}, J. Appl. Math. 2012, Article ID 370843, 19 p. (2012; Zbl 1251.65148) Full Text: DOI
Soliman, A. A. Numerical simulation of the FitzHugh-Nagumo equations. (English) Zbl 1246.65239 Abstr. Appl. Anal. 2012, Article ID 762516, 13 p. (2012). MSC: 65N99 35A35 PDF BibTeX XML Cite \textit{A. A. Soliman}, Abstr. Appl. Anal. 2012, Article ID 762516, 13 p. (2012; Zbl 1246.65239) Full Text: DOI
Povstenko, Y. Z. Axisymmetric solutions to time-fractional heat conduction equation in a half-space under Robin boundary conditions. (English) Zbl 1246.35203 Int. J. Differ. Equ. 2012, Article ID 154085, 13 p. (2012). MSC: 35R11 35K05 35B07 PDF BibTeX XML Cite \textit{Y. Z. Povstenko}, Int. J. Differ. Equ. 2012, Article ID 154085, 13 p. (2012; Zbl 1246.35203) Full Text: DOI
Kadem, Abdelouahab; Kilicman, Adem The approximate solution of fractional Fredholm integrodifferential equations by variational iteration and homotopy perturbation methods. (English) Zbl 1242.65284 Abstr. Appl. Anal. 2012, Article ID 486193, 10 p. (2012). MSC: 65R20 65L99 45J05 PDF BibTeX XML Cite \textit{A. Kadem} and \textit{A. Kilicman}, Abstr. Appl. Anal. 2012, Article ID 486193, 10 p. (2012; Zbl 1242.65284) Full Text: DOI