Fu, Chun-Ru; Shi, Huan-Nan; Wang, Dong-Sheng Schur convexity of \(L\)-conjugate means and its applications. (English) Zbl 07688621 J. Korean Math. Soc. 60, No. 3, 503-520 (2023). MSC: 26E60 26D15 26B25 PDF BibTeX XML Cite \textit{C.-R. Fu} et al., J. Korean Math. Soc. 60, No. 3, 503--520 (2023; Zbl 07688621) Full Text: DOI
Gorjizadeh, Farzaneh; Eftekhari, Noha Some remarks on various Schur convexity. (English) Zbl 1513.26078 Kragujevac J. Math. 46, No. 2, 241-257 (2022). MSC: 26D20 05E05 PDF BibTeX XML Cite \textit{F. Gorjizadeh} and \textit{N. Eftekhari}, Kragujevac J. Math. 46, No. 2, 241--257 (2022; Zbl 1513.26078) Full Text: Link
Shi, Huan-Nan; Wang, Pei; Zhang, Jian Schur-convexity for compositions of complete symmetric function dual. (English) Zbl 1503.05125 J. Inequal. Appl. 2020, Paper No. 65, 11 p. (2020). MSC: 05E05 26B25 PDF BibTeX XML Cite \textit{H.-N. Shi} et al., J. Inequal. Appl. 2020, Paper No. 65, 11 p. (2020; Zbl 1503.05125) Full Text: DOI
Wang, Dong-Sheng; Fu, Chunru; Shi, Huannan Schur-\(m\) power convexity of Cauchy means and its application. (English) Zbl 1456.26013 Rocky Mt. J. Math. 50, No. 5, 1859-1869 (2020). Reviewer: Ioan Raşa (Cluj-Napoca) MSC: 26A51 26D15 26E60 34K38 PDF BibTeX XML Cite \textit{D.-S. Wang} et al., Rocky Mt. J. Math. 50, No. 5, 1859--1869 (2020; Zbl 1456.26013) Full Text: DOI Euclid
Perla, Sreenivasa Reddy; Padmanabhan, S. Schur convexity of Bonferroni harmonic mean. (English) Zbl 1410.26049 J. Anal. 27, No. 1, 137-150 (2019). MSC: 26E60 26B25 PDF BibTeX XML Cite \textit{S. R. Perla} and \textit{S. Padmanabhan}, J. Anal. 27, No. 1, 137--150 (2019; Zbl 1410.26049) Full Text: DOI
Fu, Chun-Ru; Wang, Dongsheng; Shi, Huan-Nan Schur-convexity for a mean of two variables with three parameters. (English) Zbl 1499.26223 Filomat 32, No. 19, 6643-6651 (2018). MSC: 26E60 26A51 26D15 PDF BibTeX XML Cite \textit{C.-R. Fu} et al., Filomat 32, No. 19, 6643--6651 (2018; Zbl 1499.26223) Full Text: DOI
Shi, Huan-Nan; Wu, Shan-He Schur convexity of the generalized geometric Bonferroni mean and the relevant inequalities. (English) Zbl 1386.26039 J. Inequal. Appl. 2018, Paper No. 8, 11 p. (2018). MSC: 26E60 26B25 PDF BibTeX XML Cite \textit{H.-N. Shi} and \textit{S.-H. Wu}, J. Inequal. Appl. 2018, Paper No. 8, 11 p. (2018; Zbl 1386.26039) Full Text: DOI
Wang, Wen; Yang, Shiguo Schur \(m\)-power convexity of a class of multiplicatively convex functions and applications. (English) Zbl 1470.26019 Abstr. Appl. Anal. 2014, Article ID 258108, 12 p. (2014). MSC: 26B25 05E05 26D15 PDF BibTeX XML Cite \textit{W. Wang} and \textit{S. Yang}, Abstr. Appl. Anal. 2014, Article ID 258108, 12 p. (2014; Zbl 1470.26019) Full Text: DOI
Shi, Huan-Nan; Zhang, Jing Some new judgement theorems of Schur geometric and Schur harmonic convexities for a class of symmetric functions. (English) Zbl 1297.26024 J. Inequal. Appl. 2013, Paper No. 527, 9 p. (2013). MSC: 26B25 26D15 PDF BibTeX XML Cite \textit{H.-N. Shi} and \textit{J. Zhang}, J. Inequal. Appl. 2013, Paper No. 527, 9 p. (2013; Zbl 1297.26024) Full Text: DOI
Xia, Wei-Feng; Zhan, Xiao-Hui; Wang, Gen-Di Some properties for a class of symmetric functions with applications. (English) Zbl 1255.05197 Indian J. Pure Appl. Math. 43, No. 3, 227-249 (2012). MSC: 05E05 PDF BibTeX XML Cite \textit{W.-F. Xia} et al., Indian J. Pure Appl. Math. 43, No. 3, 227--249 (2012; Zbl 1255.05197) Full Text: DOI