Relating brand confusion to ad similarities and brand strengths through image data analysis and classification. (English) Zbl 1414.62495

Summary: Brand confusion occurs when a consumer is exposed to an advertisement (ad) for brand A but believes that it is for brand B. If more consumers are confused in this direction than in the other one (assuming that an ad for B is for A), this asymmetry is a disadvantage for A. Consequently, the confusion potential and structure of ads has to be checked: A sample of consumers is exposed to a sample of ads. For each ad the consumers have to specify their guess about the advertised brand. Then, the collected data are aggregated and analyzed using, e.g., MDS or two-mode clustering. In this paper we compare this approach to a new one where image data analysis and classification is applied: The confusion potential and structure of ads is related to featurewise distances between ads and – to model asymmetric effects – to the strengths of the advertised brands. A sample application for the German beer market is presented, the results are encouraging.


62P20 Applications of statistics to economics
62H30 Classification and discrimination; cluster analysis (statistical aspects)
62H35 Image analysis in multivariate analysis


Full Text: DOI


[1] Baier, D.; Daniel, I.; Gaul, W. (ed.); Geyer-Schulz, A. (ed.); Schmidt-Thieme, L. (ed.); Kunze, J. (ed.), Image clustering for marketing purposes, 487-494, (2012), Berlin
[2] Baier, D.; Daniel, I.; Frost, S.; Naundorf, R., Image data analysis and classification in marketing, Adv Data Anal Classif, 6, 253-276, (2012) · Zbl 1256.62003
[3] Bay, H.; Ess, A.; Tuytelaars, T.; Gool, L., Speeded-up robust features (SURF), Comput Vis Image Underst, 110, 346-359, (2008)
[4] Böckenholt, I.; Gaul, W., Zur mehrdimensionalen Analyse von Bildinformationen in Anzeigen für Imagery-Produkte, Vierteljahreshefte für Mediaplanung, 4, 20-29, (1985)
[5] Böckenholt, I.; Both, M.; Gaul, W., A knowledge-based system for supporting data analysis problems, Decis Support Syst, 5, 345-354, (1989)
[6] Buturovic A (2005) MPEG 7 color structure descriptor: For visual information retrieval project VizIR. Tech. rep., Institute for Software Technology and Interactive Systems Technical University Vienna. http://vizir.ims.tuwien.ac.at/user-documentation/csd-desc-1
[7] Chatzichristofis, SA; Boutalis, YS; Gasteratos, A. (ed.); Vincze, M. (ed.); Tsotsos, J. (ed.), CEDD: color and edge directivity descriptor: a compact description for image indexing and retrieval, 312-322, (2008), Berlin
[8] Chatzichristofis SA, Boutalis YS (2008b) FCTH: fuzzy color and texture histogram: a low level feature for accurate image retrieval. In: 9th international workshop on image analysis for multimedia interactive services, pp 191-196. doi:10.1109/WIAMIS.2008.24
[9] Choras, R., Image feature extraction techniques and their applications for CBIR and biometrics systems, Int J Biol Biomed Eng, 1, 6-16, (2007)
[10] Daniel I, Baier D (2015) Towards lifestyle segmentation via uploaded images from surveys and social networks. In: International conference on information systems (ICIS 2015), December. Forth Worth, TX, pp 13-16
[11] Duda RO, Hart PE (1973) Pattern classification and scene analysis. Wiley, New York · Zbl 0277.68056
[12] Espejo, E.; Gaul, W.; Gaul, W. (ed.); Schrader, M. (ed.), Two-mode hierarchical clustering as an instrument for marketing research, 121-128, (1986), Amsterdam
[13] Farrokhnia F, Jain A (1991) A multi-channel filtering approach to texture segmentation. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 364-370
[14] Fleuret, F.; Geman, D., Stationary features and cat detection, J Mach Learn Res, 9, 2549-2578, (2008) · Zbl 1225.68259
[15] Frost S (2014) Distanzmaße in der Bildähnlichkeitsanalyse: Neue Verfahren und deren Anwendung im Marketing. Dr. Kovac, Hamburg
[16] Frost, S.; Baier, D.; Lausen, B. (ed.); Poel, D. (ed.); Ultsch, A. (ed.), Comparing earth mover’s distance and its approximations for clustering images, 69-78, (2013), Berlin
[17] Fu, KS; Rosenfeld, A., Pattern recognition and image processing, IEEE Trans Comput, 25, 1336-1346, (1976) · Zbl 0348.68057
[18] Gaul W, Baier D (1994) Marktforschung und Marketing-Management: Computerbasierte Entscheidungsunterstützung; Buch mit Diskette, 2nd edn. Oldenbourg, München
[19] Huang J, Kumar R, Mitra M, Zhu WJ, Zabih R (1997) Image indexing using color correlograms. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 762-768
[20] Kato T (1992) Database architecture for content-based image retrieval. In; SPIE/IS&T 1992 symposium on electronic imaging: science and technology. International Society for Optics and Photonics, San Jose, CA, pp 112-123
[21] Keon, JW, Product positioning: trinodal mapping of brand images, ad images, and consumer preference, J Mark Res, 20, 380-392, (1983)
[22] Keon, JW, Copy testing ads for imagery products, J Advert Res, 23, 41-48, (1984)
[23] Liu, Y.; Zhang, D.; Lu, G.; Ma, WY, A survey of content-based image retrieval with high-level semantics, Pattern Recognit, 40, 262-282, (2007) · Zbl 1103.68503
[24] Lowe D (1999) Object recognition from local scale-invariant features. In: The proceedings of the seventh IEEE international conference on computer vision, vol 2, pp 1150-1157
[25] Lowe, D., Distinctive image features from scale-invariant keypoints, Int J Comput Vis, 60, 91-110, (2004)
[26] Maheshwari M, Silakari S, Motwani M (2009) Image clustering using color and texture. In: First international conference on computational intelligence. Communication systems and networks, Indore, India, pp 403-408
[27] Manjunath BS, Salembier P, Sikora T (eds) (2002) Introduction to MPEG-7: multimedia content description interface. Wiley, Chichester
[28] Mechelen, IV; Bock, HH; Boeck, PD, Two-mode clustering methods: a structured overview, Stat Methods Med Res, 13, 363-394, (2004) · Zbl 1053.62078
[29] Nesshoever C (2013) Bier: Das Grauen der deutschen Brauer. Manager Magazin online p 20.12.2013
[30] Niblack W, Barber R, Equitz W, Flickner M, Glasman E, Petkovic D, Yanker P, Faloutsos C, Taubin G (1993) The QBIC Project: Querying images by content using color, texture, and shape. IS&T/SPIE 1993 symposium on electronic imaging: science and technology, international society for optics and photonics, San Jose, CA, pp 173-187
[31] Niemann H (1983) Klassifikation von Mustern. Springer, Berlin · Zbl 0537.68084
[32] Nishisato, S.; Gaul, W., An approach to marketing data analysis: the forced classification procedure of dual scaling, J Mark Res, 27, 354-360, (1990)
[33] Ohm, JR; Cieplinski, L.; Kim, H.; Krishnamachari, S.; Manjunath, B.; Messing, D.; Yamada, A.; Manjunath, BS (ed.); Salembier, P. (ed.); Sikora, T. (ed.), The MPEG-7 color descriptors, 187-212, (2002), Chichester
[34] Okada, A.; Imaizumi, T., Asymmetric multidimensional scaling of two-mode three-way proximities, J Classif, 14, 195-224, (1997) · Zbl 0905.92035
[35] Okada, A.; Imaizumi, T.; Decker, R. (ed.); Lenz, HJ (ed.), Multidimensional scaling of asymmetric proximities with a dominance point, 307-318, (2007), Berlin
[36] Park DK, Jeon YS, Won CS (2000) Efficient use of local edge histogram descriptor. In: Proceedings of the 2000 ACM workshops on multimedia, pp 51-54
[37] Pele, O.; Werman, M., Fast and robust earth mover’s distances, IEEE 12th Int Conf Comput Vis, 12, 460-467, (2009)
[38] Rix R (2003) Zweimodale hierarchische Clusteranalyse. Gabler, Wiesbaden
[39] Rocci, R.; Vichi, M., Two-mode multi-partitioning, Comput Stat Data Anal, 52, 1984-2003, (2008) · Zbl 1452.62463
[40] Rosenfeld A (1969) Picture processing by computer. Computer science and applied mathematics. Academic Press, New York · Zbl 0198.52401
[41] Rubner, Y.; Tomasi, C.; Guibas, L., The earth mover’s distance as a metric for image retrieval, Int J Comput Vis, 40, 99-121, (2000) · Zbl 1012.68705
[42] Schader, M.; Gaul, W.; Schader, M. (ed.), The MVL (missing values linkage) approach for hierarchical classification when data are incomplete, No. 2e, 107-115, (1992), Berlin
[43] Schmitt I (2005) Ähnlichkeitssuche in Multimedia-Datenbanken - Retrieval. Suchalgorithmen und Anfragebehandlung. Oldenbourg, München · Zbl 1100.68018
[44] Schwaiger, M.; Klar, R. (ed.); Opitz, O. (ed.), Two-mode classification in advertising research, 596-603, (1997), Berlin
[45] Stiftung, Warentest, Marken nicht besser - Discounter gegen Marken, Test, 2011, 24-28, (2011)
[46] Swain, M.; Ballard, D., Color indexing, Int J Comput Vis, 7, 11-32, (1991)
[47] Tamura, H.; Mori, S.; Yamawaki, T., Texture features corresponding to visual perception, IEEE Trans Syst Man Cybern, 8, 460-473, (1978)
[48] Werman, M.; Peleg, S.; Rosenfeld, A., A distance metric for multidimensional histograms, Comput Vis Graph Image Process, 32, 328-336, (1985) · Zbl 0624.68060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.