Agrawal, Gunjan; Gupta, Vijay Modified Lupaş-Kantorovich operators with Pólya distribution. (English) Zbl 07639779 Rocky Mt. J. Math. 52, No. 6, 1909-1919 (2022). MSC: 41A25 PDF BibTeX XML Cite \textit{G. Agrawal} and \textit{V. Gupta}, Rocky Mt. J. Math. 52, No. 6, 1909--1919 (2022; Zbl 07639779) Full Text: DOI Link
Bhatt, Dhawal J.; Mishra, Vishnu Narayan; Jana, Ranjan Kumar New class of beta type operators approximating integrable function. (English) Zbl 1443.41013 Adv. Oper. Theory 5, No. 2, 301-323 (2020). Reviewer: Vijay Gupta (New Delhi) MSC: 41A30 41A36 PDF BibTeX XML Cite \textit{D. J. Bhatt} et al., Adv. Oper. Theory 5, No. 2, 301--323 (2020; Zbl 1443.41013) Full Text: DOI
Bhatt, Dhawal J.; Mishra, Vishnu Narayan; Jana, Ranjan Kumar On a new class of Bernstein type operators based on Beta function. (English) Zbl 1449.47033 Khayyam J. Math. 6, No. 1, 1-15 (2020). MSC: 47A58 41A36 41A30 PDF BibTeX XML Cite \textit{D. J. Bhatt} et al., Khayyam J. Math. 6, No. 1, 1--15 (2020; Zbl 1449.47033) Full Text: DOI
Acar, Tuncer; Cappelletti Montano, Mirella; Garrancho, Pedro; Leonessa, Vita On sequences of J. P. King-type operators. (English) Zbl 1423.41027 J. Funct. Spaces 2019, Article ID 2329060, 12 p. (2019). MSC: 41A36 41A35 PDF BibTeX XML Cite \textit{T. Acar} et al., J. Funct. Spaces 2019, Article ID 2329060, 12 p. (2019; Zbl 1423.41027) Full Text: DOI
Neer, Trapti; Agrawal, P. N. A genuine family of Bernstein-Durrmeyer type operators based on Polya basis functions. (English) Zbl 1488.41059 Filomat 31, No. 9, 2611-2623 (2017). MSC: 41A36 26A45 40A35 PDF BibTeX XML Cite \textit{T. Neer} and \textit{P. N. Agrawal}, Filomat 31, No. 9, 2611--2623 (2017; Zbl 1488.41059) Full Text: DOI
Deo, N.; Bhardwaj, N. A better error estimation on Balázs operators. (English) Zbl 1321.41033 Lobachevskii J. Math. 36, No. 1, 9-14 (2015). MSC: 41A36 41A10 PDF BibTeX XML Cite \textit{N. Deo} and \textit{N. Bhardwaj}, Lobachevskii J. Math. 36, No. 1, 9--14 (2015; Zbl 1321.41033) Full Text: DOI
Cárdenas-Morales, D.; Garrancho, P.; Raşa, I. Approximation properties of Bernstein-Durrmeyer type operators. (English) Zbl 1410.41030 Appl. Math. Comput. 232, 1-8 (2014). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{D. Cárdenas-Morales} et al., Appl. Math. Comput. 232, 1--8 (2014; Zbl 1410.41030) Full Text: DOI
Cárdenas-Morales, Daniel; Gupta, Vijay Two families of Bernstein-Durrmeyer type operators. (English) Zbl 1338.41013 Appl. Math. Comput. 248, 342-353 (2014). MSC: 41A35 PDF BibTeX XML Cite \textit{D. Cárdenas-Morales} and \textit{V. Gupta}, Appl. Math. Comput. 248, 342--353 (2014; Zbl 1338.41013) Full Text: DOI
Jung, Hee Sun; Deo, Naokant; Dhamija, Minakshi Pointwise approximation by Bernstein type operators in mobile interval. (English) Zbl 1335.41004 Appl. Math. Comput. 244, 683-694 (2014). MSC: 41A35 PDF BibTeX XML Cite \textit{H. S. Jung} et al., Appl. Math. Comput. 244, 683--694 (2014; Zbl 1335.41004) Full Text: DOI