Ludu, A. Vortex structures inside spherical mesoscopic superconductor plus magnetic dipole. (English) Zbl 1440.82012 Adv. Math. Phys. 2018, Article ID 8652151, 19 p. (2018). Summary: We investigate the existence of multivortex states in a superconducting mesoscopic sphere with a magnetic dipole placed at the center. We obtain analytic solutions for the order parameter \(\Psi(\overset{\rightarrow} {r})\) inside the sphere through the linearized Ginzburg-Landau (GL) model, coupled with mixed boundary conditions, and under regularity conditions and decoupling coordinates approximation. The solutions of the linear GL equation are obtained in terms of Heun double confluent functions, in dipole coordinates symmetry. The analyticity of the solutions and the associated eigenproblem are discussed thoroughly. We minimize the free energy for the fully nonlinear GL system by using linear combinations of linear analytic solutions, and we provide the conditions of occurring multivortex states. The results are not restricted to the particular spherical geometry, since the present formalism can be extended for large samples, up to infinite superconducting space plus magnetic dipole. MSC: 82D55 Statistical mechanics of superconductors × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Whitesides, G. M., Nanoscience, nanotechnology, and chemistry, Small, 1, 2, 172-179, (2005) · doi:10.1002/smll.200400130 [2] Kruchinin, S.; Nagao, H.; Aono, S., Modern Aspects of Superconductivity, (2010), New Jersey, USA: World Scientific, New Jersey, USA [3] Safronova, M.; Budker, D.; DeMille, D.; Kimball, D. F.; Derevianko, A.; Clark, C. W., Search for new physics with atoms and molecules, Reviews of Modern Physics, 90, 2, (2018) · doi:10.1103/RevModPhys.90.025008 [4] Bimberg, D.; Pohl, U. W., Quantum dots: Promises and accomplishments, Materials Today, 14, 9, 388-397, (2011) · doi:10.1016/S1369-7021(11)70183-3 [5] Küpfer, H.; Linker, G.; Ravikumar, G.; Wolf, T.; Will, A.; Zhukov, A. A.; Meier-Hirmer, R.; Obst, B.; Wühl, H., Correlation of the vortex order-disorder transition with the symmetry of the crystal lattice in V_{3}Si, Physical Review B: Condensed Matter and Materials Physics, 67, 6, (2003) · doi:10.1103/PhysRevB.67.064507 [6] Filby, E. T.; Zhukov, A. A.; de Groot, P. A.; Ghanem, M. A.; Bartlett, P. N.; Metlushko, V. V., Shape induced anomalies in vortex pinning and dynamics of superconducting antidot arrays with spherical cavities, Applied Physics Letters, 89, 9, 092503, (2006) · doi:10.1063/1.2339047 [7] Geim, A. K.; Grigorieva, I. V.; Dubonos, S. V., Phase transitions in individual sub-micrometre superconductors, Letter to Nature, 390, 6657, 259-262, (1997) · doi:10.1038/36797 [8] Misko, V. R., Recent Advances in Superconductivity and Vortex Matter: Selected Topics, Reports in Advances of Physical Sciences, 1, 4, 1750009, (2017) · doi:10.1142/S2424942417500098 [9] Xu, B.; Milošević, M. V.; Peeters, F. M., Magnetic properties of vortex states in spherical superconductors, Physical Review B: Condensed Matter and Materials Physics, 77, 14, (2008) · doi:10.1103/PhysRevB.77.144509 [10] Doria, M. M.; Romaguera, A. R.; Peeters, F. M., Effect of the boundary condition on the vortex patterns in mesoscopic three-dimensional superconductors: Disk and sphere, Physical Review B, 75, (2007) [11] Doria, M. M.; Romaguera, A. R.; Milosevic, M. V.; Peeters, F. M., Threefold onset of vortex loops in superconductors with a magnetic core, EPL (Europhysics Letters), 79, 47006, (2007) [12] Baelus, B. J.; Sun, D.; Peeters, F. M., Vortex structures in mesoscopic superconducting spheres, Physical Review B: Condensed Matter and Materials Physics, 75, 17, (2007) · doi:10.1103/PhysRevB.75.174523 [13] Zha, G.; Zhou, S.; Zhu, B.; Shi, Y.; Zhao, H., Superconducting phase transitions in thin mesoscopic rings with enhanced surface superconductivity, Physical Review B: Condensed Matter and Materials Physics, 74, 2, (2006) · doi:10.1103/PhysRevB.74.024527 [14] Zha, G.; Zhou, S.; Zhu, B.; Shi, Y.; Zhao, H., Charge distribution in thin mesoscopic superconducting rings with enhanced surface superconductivity, Physical Review B: Condensed Matter and Materials Physics, 73, (2006) [15] Schweigert, V. A.; Peeters, F. M., Phase transitions in thin mesoscopic superconducting disks, Physical Review B: Condensed Matter and Materials Physics, 57, 21, 13817-13832, (1998) · doi:10.1103/PhysRevB.57.13817 [16] Schweigert, V. A.; Peeters, F. M.; Deo, P. S., Vortex Phase Diagram for Mesoscopic Superconducting Disks, Physical Review Letters, 81, 13, 2783-2786, (1998) · doi:10.1103/PhysRevLett.81.2783 [17] Palacios, J. J., Metastability and Paramagnetism in Superconducting Mesoscopic Disks, Physical Review Letters, 84, 8, 1796-1799, (2000) · doi:10.1103/PhysRevLett.84.1796 [18] Palacios, J. J., Vortex matter in superconducting mesoscopic disks: Structure, magnetization, and phase transitions, Physical Review B: Condensed Matter and Materials Physics, 58, 10, R5948-R5951, (1998) · doi:10.1103/PhysRevB.58.R5948 [19] Sato, O.; Kato, M.; Physics 871, J., A variety of vortex state solutions of Ginzburg-Landau equation on superconducting mesoscopic plates, Journal of Physics: Conference Series (JPCS), 1-4, (2017) [20] Cycon, H. L.; Froese, R. G.; Kirsch, W.; Simon, B., Schrödinger Operators, (1987), Berlin, Heidelberg: Schrödinger Operators, Berlin, Heidelberg · Zbl 0619.47005 [21] Miller, K.; Simon, B., Quantum magnetic Hamiltonians with remarkable spectral properties, Physical Review Letters, 44, 25, 1706-1707, (1980) · Zbl 1404.81104 · doi:10.1103/PhysRevLett.44.1706 [22] Picca, D., The dipolar potential, Journal of Physics A: Mathematical and General, 15, 9, 2801-2808, (1982) · doi:10.1088/0305-4470/15/9/029 [23] Lévai, G.; Williams, B. W., The generalized Coulomb problem: an exactly solvable model, Journal of Physics A: Mathematical and General, 26, 13, 3301-3306, (1993) · Zbl 0789.34001 · doi:10.1088/0305-4470/26/13/032 [24] Alhaidari, A. D.; Bahlouli, H., Publisher’s Note: Electron in the Field of a Molecule with an Electric Dipole Moment, Physical Review Letters, 100, 12, (2008) · Zbl 1152.81313 · doi:10.1103/PhysRevLett.100.129901 [25] Zwillinger, D., Handbook of Differential Equations, (1989), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0678.34001 [26] Moon, P.; Spencer, D. E., Field Theory Handbook, (1971), Berlin, Germany: Springer, Berlin, Germany [27] Ronveaux, A., Heuns Differential Equations, (1955), Oxford, England: University Press, Oxford, England [28] Ralko, A.; Truong, T. T., Heun functions and the energy spectrum of a charged particle on a sphere under a magnetic field and Coulomb force, Journal of Physics A: Mathematical and General, 35, 45, 9573-9583, (2002) · Zbl 1057.81025 · doi:10.1088/0305-4470/35/45/306 [29] Ralko, A.; Truong, T. T., Behaviour of three charged particles on a plane under perpendicular magnetic field, Journal of Physics A: Mathematical and General, 35, 45, 9671-9683, (2002) · Zbl 1046.81563 · doi:10.1088/0305-4470/35/45/313 [30] Debosscher, A., Unification of one-dimensional Fokker-Planck equations beyond hypergeometrics: factorizer solution method and eigenvalue schemes, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 57, 1, 252-275, (1998) · Zbl 0914.60091 · doi:10.1103/PhysRevE.57.252 [31] Kazakov, A. Y., The central two-point connection problem for the reduced confluent Heun equation, Journal of Physics A: Mathematical and General, 39, 10, 2339-2348, (2006) · Zbl 1198.34190 · doi:10.1088/0305-4470/39/10/007 [32] Bauer, C. W.; Ligeti, Z.; Luke, M.; Manohar, A. V.; Trott, M., Global analysis of inclusive B decays, Physical Review D: Particles, Fields, Gravitation and Cosmology, 70, (2004) · doi:10.1103/PhysRevD.70.094017 [33] Bouaziz, D.; Bawin, M., Regularization of the singular inverse square potential in quantum mechanics with a minimal length, Physical Review A: Atomic, Molecular and Optical Physics, 76, (2007) · doi:10.1103/physreva.76.032112 [34] Gao, B., Solutions of the Schrödinger equation for an attractive 1/r potential, Physical Review A, 58, 1728, (1998) [35] Stahlhofen, A. A., Susy, Gauss, Heun and physics: a magic square?, Journal of Physics A: Mathematical and General, 37, 43, 10129-10138, (2004) · Zbl 1064.34076 · doi:10.1088/0305-4470/37/43/008 [36] Swisdak, M., Notes on the Dipole Coordinate System [37] Fatkullin, M. N.; Sitnov, Y. S., Dipole coordinate system and some of its characteristics, Geomegnatism and Aeronomy, 12, 293-295, (1972) [38] Kageyama, A.; Sugiyama, T.; Watanabe, K., A Note on the Dipole Coordinates, Computers & Geosciences, 32, 3, 265-269, (2006) · doi:10.1088/0954-3899/32/3/r01 [39] Ludu, A., Vortex patterns beyond hypergeometric, Journal of Geometry and Symmetry in Physics, 26, 85-103, (2012) · Zbl 1267.82142 [40] Ludu, A.; Milosevic, M. V.; Peeters, F. M., Vortex states in axially symmetric superconductors in applied magnetic field, Mathematics and Computers in Simulation, 82, 7, 1258-1270, (2012) · Zbl 1253.82123 · doi:10.1016/j.matcom.2012.02.001 [41] Ludu, A.; Van Deun, J.; Milosevic, M. V.; Cuyt, A.; Peeters, F. M., Analytic treatment of vortex states in cylindrical superconductors in applied axial magnetic field, Journal of Mathematical Physics, 51, 8, (2010) · Zbl 1312.82025 · doi:10.1063/1.3470767 [42] Hille, E., Ordinary Differential Equations in The Complex Domain, (1976), New York, NY, USA: Willey, New York, NY, USA · Zbl 0343.34007 [43] Hounkonnou, M. N.; Ronveaux, A.; Sodoga, K., Factorization of some confiuent Heun’s differential equations, Applied Mathematics and Computation, 189, 816-820, (2007) · Zbl 1126.34307 [44] Bühring, W., The double confluent Heun equation: characteristic exponent and connection formulae, Methods and Applications of Analysis, 1, 3, 348-370, (1994) · Zbl 0849.34004 · doi:10.4310/MAA.1994.v1.n3.a6 [45] Lay, W.; Bay, K.; Slavyanov, S. Y., Asymptotic and numeric study of eigenvalues of the double confluent Heun equation, Journal of Physics A: Mathematical and General, 31, 42, 8521-8531, (1998) · Zbl 0949.34069 · doi:10.1088/0305-4470/31/42/011 [46] Magnus, W.; Winkler, S., Hill’s Equation. Hill’s Equation, Inderscience Publishers, (1966), New York, NY, USA · Zbl 0158.09604 [47] Kuiken, K., Heun’s equation and the hypergeometric equation, SIAM Journal on Mathematical Analysis, 10, 3, 655-657, (1979) · Zbl 0415.34038 · doi:10.1137/0510060 [48] Clarkson, P. A.; Olver, P. J., Symmetry and the Chazy Equation, Journal of Differential Equations, 124, 1, 225-246, (1996) · Zbl 0842.34010 · doi:10.1006/jdeq.1996.0008 [49] Becker, P. A., Normalization integrals of orthogonal Heun functions, Journal of Mathematical Physics, 38, 7, 3692-3699, (1997) · Zbl 0891.34023 · doi:10.1063/1.532062 [50] Valent, G., Heun functions versus elliptic functions, Mathematical Physics, (2005) · Zbl 1125.33017 [51] Figueiredo, D. D. B., Ince’s limits for confluent and double-confluent Heun equations, Mathematical Physics, (2005) · Zbl 1111.34064 [52] Malits, P.; Math, J., On certain Heun functions, associated functions of discrete variables, and applications, International Journal of Mathematics and Mathematical Sciences, 59, 3717, (2003) · Zbl 1045.33012 [53] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions, (1964), Washington, DC, USA: National Bureau of Standards, Washington, DC, USA · Zbl 0171.38503 [54] Arfken in, G., Mathematical Methods in Physics, (pp. 112-117, 1970), Orlando, FL, USA: Academic Press, Orlando, FL, USA [55] Bateman, H., Spheroidal and bipolar coordinates, Duke Mathematical Journal, 4, 1, 39-50, (1938) · Zbl 0019.06101 · doi:10.1215/S0012-7094-38-00404-1 [56] Lockwood, E. H., A book of curves, (pp. 186-190, 1967), Cambridge, England: Cambridge University Press, Cambridge, England This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.