×

Screen type mixed boundary value problems for anisotropic pseudo-Maxwell’s equations. (English) Zbl 1352.35023

Summary: We investigate screen type mixed boundary value problems for anisotropic pseudo-Maxwell’s equations. We show that the problems with tangent traces are well posed in tangent Sobolev spaces. The unique solvability results are proven based on the potential method and coercivity result of Costabel on the bilinear form associated with pseudo-Maxwell’s equations.

MSC:

35J25 Boundary value problems for second-order elliptic equations
35C15 Integral representations of solutions to PDEs
47F05 General theory of partial differential operators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abboud T. and Starling F., Scattering of an electromagnetic wave by a screen, Boundary Value Problems and Integral Equations in Nonsmooth Domains (Luminy 1993), Lect. Notes in Pure Appl. Math. 167, Dekker, New York (1995), 1-17.; Abboud, T.; Starling, F., Scattering of an electromagnetic wave by a screen, Boundary Value Problems and Integral Equations in Nonsmooth Domains, 1-17 (1995) · Zbl 0819.35132
[2] Buchukuri T., Duduchava R., Kapanadze D. and Natroshvili D., On the uniqueness of a solution to anisotropic Maxwell’s equations, Topics in Operator Theory. Volume 2. Systems and Mathematical Physics, Oper. Theory Adv. Appl. 203, Birkhäuser, Basel (2010), 137-164.; Buchukuri, T.; Duduchava, R.; Kapanadze, D.; Natroshvili, D., On the uniqueness of a solution to anisotropic Maxwell’s equations, Topics in Operator Theory. Volume 2. Systems and Mathematical Physics, 137-164 (2010) · Zbl 1192.78014
[3] Buffa A. and Christiansen S. H., The electric field integral equation on Lipschitz screens: Definitions and numerical approximation, Numer. Math. 94 (2003), no. 2, 229-267.; Buffa, A.; Christiansen, S. H., The electric field integral equation on Lipschitz screens: Definitions and numerical approximation, Numer. Math., 94, 2, 229-267 (2003) · Zbl 1027.65188
[4] Buffa A., Costabel M. and Sheen D., On traces for \({\text{H}(\text{curl},\Omega)}\) in Lipschitz domains, J. Math. Anal. Appl. 276 (2002), no. 2, 845-867.; Buffa, A.; Costabel, M.; Sheen, D., On traces for \({\text{H}(\text{curl},\Omega)}\) in Lipschitz domains, J. Math. Anal. Appl., 276, 2, 845-867 (2002) · Zbl 1106.35304
[5] Chkadua O., Duduchava R. and Kapanadze D., Potential methods for anisotropic pseudo-Maxwell equations in screen type problems, Operator Theory, Pseudo-Differential Equations, and Mathematical Physics, Oper. Theory Adv. Appl. 228, Birkhäuser, Basel (2013), 73-93.; Chkadua, O.; Duduchava, R.; Kapanadze, D., Potential methods for anisotropic pseudo-Maxwell equations in screen type problems, Operator Theory, Pseudo-Differential Equations, and Mathematical Physics, 73-93 (2013) · Zbl 1276.35066
[6] Chkadua O., Duduchava R. and Kapanadze D., The screen type Dirichlet boundary value problems for anisotropic pseudo-Maxwell’s equations, Mem. Differ. Equ. Math. Phys. 66 (2015), 33-43.; Chkadua, O.; Duduchava, R.; Kapanadze, D., The screen type Dirichlet boundary value problems for anisotropic pseudo-Maxwell’s equations, Mem. Differ. Equ. Math. Phys., 66, 33-43 (2015) · Zbl 1337.35041
[7] Chkadua O., Duduchava R. and Kapanadze D., Screen type problems for anisotropic pseudo-Maxwell’s equations, Ann. Funct. Anal. 7 (2016), no. 2, 217-231.; Chkadua, O.; Duduchava, R.; Kapanadze, D., Screen type problems for anisotropic pseudo-Maxwell’s equations, Ann. Funct. Anal., 7, 2, 217-231 (2016) · Zbl 1335.35043
[8] Colton D. and Kress R., Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed., Appl. Math. Sci. 93, Springer, Berlin, 1998.; Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (1998) · Zbl 0893.35138
[9] Costabel M., A coercive bilinear form for Maxwell’s equations, J. Math. Anal. Appl. 157 (1991), no. 2, 527-541.; Costabel, M., A coercive bilinear form for Maxwell’s equations, J. Math. Anal. Appl., 157, 2, 527-541 (1991) · Zbl 0738.35095
[10] Duduchava R., The Green formula and layer potentials, Integral Equations Operator Theory 41 (2001), no. 2, 127-178.; Duduchava, R., The Green formula and layer potentials, Integral Equations Operator Theory, 41, 2, 127-178 (2001) · Zbl 1102.31006
[11] Hsiao G. C. and Wendland W. L., Boundary Integral Equations, Appl. Math. Sci. 164, Springer, Berlin, 2008.; Hsiao, G. C.; Wendland, W. L., Boundary Integral Equations (2008) · Zbl 1157.65066
[12] Kupradze V. D., Gegelia T. G., Basheleishvili M. O. and Burchuladze T. V., Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland Ser. Appl. Math. Mech. 25, North-Holland, Amsterdam, 1979.; Kupradze, V. D.; Gegelia, T. G.; Basheleishvili, M. O.; Burchuladze, T. V., Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity (1979)
[13] McLean W., Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.; McLean, W., Strongly Elliptic Systems and Boundary Integral Equations (2000) · Zbl 0948.35001
[14] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, 2nd ed., Johann Ambrosius Barth, Heidelberg, 1995.; Triebel, H., Interpolation Theory, Function Spaces, Differential Operators (1995) · Zbl 0830.46028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.