×

Fishing principle for homoclinic and heteroclinic trajectories. (English) Zbl 1331.34079

Summary: In the present paper, a Fishing principle for the existence of homoclinic and heteroclinic trajectories is formulated and proved. This principle is applied to Lorenz-like systems and Phase locked loops.

MSC:

34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
37C29 Homoclinic and heteroclinic orbits for dynamical systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Leonov, G.A.: Attractors, limit cycles and homoclinic orbits of low-dimensional quadratic systems. Anal. Methods Can. Appl. Math. Q. 17, 121-159 (2009) · Zbl 1225.34066
[2] Leonov, G.A.: General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu-Morioka, Lu and Chen systems. Phys. Lett. A 376, 3045-3050 (2012) · Zbl 1266.34079 · doi:10.1016/j.physleta.2012.07.003
[3] Leonov, G.A.: The Tricomi problem for the Shimizu-Morioka dynamical system. Dokl. Math. 86(3), 850-853 (2012) · Zbl 1269.34051
[4] Leonov, G.A.: Criteria for the existence of homoclinic orbits of systems Lu and Chen. Dokl. Math. 87(2), 220-223 (2012) · Zbl 1278.34049 · doi:10.1134/S1064562413020300
[5] Leonov, G.A.: Shilnikov chaos in Lorenz-like systems. Int. J. Bifurc. Chaos. 23(3) (2013). art. num. 1350058 · Zbl 1270.34103
[6] Leonov, G.A., Boichenko, V.A.: Lyapunov’s direct method in the estimation of the attractors. Acta Appl. Math. 26, 1-60 (1992) · Zbl 0758.58022 · doi:10.1007/BF00046607
[7] Pikovsky, A.S., Rabinovich, M.I.: Appearance of stochasticity on decay confinement of parametric instability. J. Exp. Theor. Phys. 74(4), 1366-1374 (1978)
[8] Rabinovich, M.I.: Stochastic self-oscillations and turbulence. Uspekhi Phys. 125, 123-168 (1978)
[9] Akhtanov, S.N., Zhanabaev, ZZh: Sequences of gluing bifurcations in an analog electronic circuit. Phys. Lett. A 377(2527), 1621-1626 (2013) · Zbl 1276.42002 · doi:10.1016/j.physleta.2013.04.049
[10] Yakubovich, V.A., Leonov, G.A.: Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities. World Scientific, Singapore (2004) · Zbl 1054.93002 · doi:10.1142/5442
[11] Leonov, G.A., Ponomarenko, D.V., Smirnova, V.B.: Frequency-Domain Methods for Nonlinear Analysis. World Scientific, Singapore (1996) · Zbl 0954.65091
[12] Kudrewicz, J., Wasowicz, S.: Equations of Phase-Locked Loops: Dynamics on the Circle, Torus and Cylinder. World Scientific, Singapore (2007) · Zbl 1143.34003
[13] Best, R.E.: Phase-Lock Loops: Design, Simulation and Application. McGraw-Hill, NY (2007)
[14] Gardner, F.: Phase-Lock Techniques. Wiley, New York (1966)
[15] Suarez, A., Quere, R.: Stability Analysis of Nonlinear Microwave Circuits. Artech House, New Jersey (2003)
[16] Stensby, J.: Phase-Locked Loops: Theory and Applications, Theory and Applications. Taylor & Francis, London (1997)
[17] Leonov, G.A., Kuznetsov, N.V., Yuldahsev, M.V., Yuldashev, R.V.: Analytical method for computation of phase-detector characteristic. IEEE Trans. Circuits Syst. II Express Br. 59(10), 633-637 (2012)
[18] Leonov, G.A.: Phase-lock loops, theory and application. Autom. Remote Control 10, 47-55 (2006)
[19] Belyustina, L.N., Bykov, V.V., Kiveleva, K.G., Shalfeev, V.D.: (1970). On a value of the acquisition band of a PLL system with a proportional integrating filter. Izv. Vyssh. Uchebn. Zaved., Radiofizika 13, 4 (in Russian) (1970)
[20] Leonov, G.A.: Mathematical Problems of Control Theory. An Introduction. World Scientific, London (2001) · Zbl 0986.93002
[21] Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits. Int. J. Bifurc. Chaos 23(1), art. no. 1330002 (2013) · Zbl 1270.34003
[22] Belykh, V.N., Nekorkin, V.I.: Qualitative investigation of a system of three differential equations in the theory of phase synchronization. J. Appl. Math. Mech. 39(4), 615-622 (1975) · Zbl 0333.70012 · doi:10.1016/0021-8928(75)90062-3
[23] Watanada, K., Endo, T., Seishi, H.: Shilnikov orbits in an autonomous third-order chaotic phase—locked loop. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 45(9), 979-983 (1998) · doi:10.1109/81.721264
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.