Panin, I.; Walter, C. On the algebraic cobordism spectra \(\mathbf{MSL}\) and \(\mathbf{MSp} \). (English) Zbl 07637768 St. Petersbg. Math. J. 34, No. 1, 109-141 (2023) and Algebra Anal. 34, No. 1, 144-187 (2022). Summary: The algebraic cobordism spectra \(\mathbf{MSL}\) and \(\mathbf{MSp}\) are constructed. They are commutative monoids in the category of symmetric \(T^{\wedge 2} \)-spectra. The spectrum \(\mathbf{MSp}\) comes with a natural symplectic orientation given either by a tautological Thom class \(th^{\mathbf{MSp}} \in \mathbf{MSp}^{4,2}(\mathbf{MSp}_2)\), or a tautological Borel class \(b_1^{\mathbf{MSp}} \in \mathbf{MSp}^{4,2}(HP^{\infty })\), or any of six other equivalent structures. For a commutative monoid \(E\) in the category \({SH}(S)\), it is proved that the assignment \(\varphi \mapsto \varphi (th^{\mathbf{MSp}})\) identifies the set of homomorphisms of monoids \(\varphi \colon \mathbf{MSp}\to E\) in the motivic stable homotopy category \(SH(S)\) with the set of tautological Thom elements of symplectic orientations of \(E\). A weaker universality result is obtained for \(\mathbf{MSL}\) and special linear orientations. The universality of \(\mathbf{MSp}\) has been used by the authors to prove a Conner-Floyed type theorem. The weak universality of \(\mathbf{MSL}\) has been used by A. Ananyevskiy to prove another version of the Conner-Floyed type theorem. MSC: 14F42 Motivic cohomology; motivic homotopy theory Keywords:\(\mathbf{A}^1\)-homotopy theory; Thom classes; universality theorems PDF BibTeX XML Cite \textit{I. Panin} and \textit{C. Walter}, St. Petersbg. Math. J. 34, No. 1, 109--141 (2023; Zbl 07637768) Full Text: DOI arXiv OpenURL References: [1] A. Ananyevskiy, Relationship between algebraic MSL-cobordisms and derived Witt groups, Dokl. Akad. Nauk 448 (2013), no. 5, 503-505; English transl., Dokl. Math. 87 (2013), no. 1, 76-78. 3088614 · Zbl 1291.55008 [2] A. Ananyevskiy, On the relation of special linear algebraic cobordism to Witt groups, Homology Homotopy Appl. 18 (2016), no. 1, 204-230. 3491850 · Zbl 1352.14012 [3] P. Balmer and B. Calm\`es, Witt groups of Grassmann varieties, Algebr. Geom. 21 (2012), no. 4, 601-642. 2957690 · Zbl 1273.14098 [4] B. I. Dundas, O. R\"ondigs, and P. A. stvr, Motivic functors, Doc. Math. 8 (2003), 489-525. 2029171 · Zbl 1042.55006 [5] M. Hovey, Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra 165 (2001), no. 1, 63-127. 1860878 · Zbl 1008.55006 [6] D. C. Isaksen, Flasque model structures for simplicial presheaves, K-Theory 36 (2005), no. 3-4, 371-395. 2275013 · Zbl 1116.18008 [7] J. F. Jardine, Motivic symmetric spectra, Doc. Math. 5 (2000), 445-552. 1787949 · Zbl 0969.19004 [8] M. Levine and F. Morel, Algebraic cobordism, Springer Monogr. Math., Springer, Berlin, 2007. 2286826 · Zbl 1188.14015 [9] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Math. Monogr., Oxford Univ. Press, New York, 1995. 1354144 [10] F. Morel and V. Voevodsky, \( \mathbf A^1\)-homotopy theory of schemes, Inst. Hautes \'Etudes Sci. Publ. Math. 90 (1999), 45-143. 1813224 · Zbl 0983.14007 [11] I. Panin, Oriented cohomology theories of algebraic varieties, Special issue in honor of Hyman Bass on his seventieth birthday. Pt. III, K-Theory 30 (2003), no. 3, 265-314. 2064242 · Zbl 1047.19001 [12] I. Panin, K. Pimenov, and O. R\"ondigs, A universality theorem for Voevodsky’s algebraic cobordism spectrum, Homology Homotopy Appl. 10 (2008), no. 2, 211-226. 2475610 · Zbl 1162.14013 [13] I. Panin, K. Pimenov, and O. R\"ondigs, On Voevodsky’s algebraic \(K\)-theory spectrum, Algebraic topology, Abel Symp., vol. 4, Springer, Berlin, 2009, pp. 279-330. 2597741 · Zbl 1179.14022 [14] I. Panin and C. Walter, On the motivic commutative ring spectrum \(\mathbf BO,\) Algebra i Analiz 30 (2018), no. 6, 43-96; English transl., St. Petersburg Math. J. 30 (2019), no. 6, 933-972. 3882540 · Zbl 1428.14011 [15] I. Panin and C. Walter, On the relation of symplectic algebraic cobordism to hermitian K-theory, Tr. Mat. Inst. Steklova 307 (2019), 180-192; English transl., Proc. Steklov Inst. Math. 307 (2019), 162-173. 4070064 · Zbl 1442.19012 [16] I. Panin and C. Walter, Quaternionic Grassmannians and Borel classes in algebraic geometry, Algebra i Analiz 33 (2021), no. 1, 136-193. 4219508 · Zbl 1486.14067 [17] G. Vezzosi, Brown-Peterson spectra in stable \(A^1\)-homotopy theory, Rend. Sem. Mat. Univ. Padova 106 (2001), 47-64. 1876212 · Zbl 1165.14308 [18] V. Voevodsky, \( \mathbf A\sp 1\)-homotopy theory, Doc. Math. 1998, Extra Vol. I, pp. 579-604. 1648048 · Zbl 0907.19002 [19] V. Voevodsky, O. R\"ondigs, and P. A. stvr, Voevodsky’s Nordfjordeid lectures\textup : motivic homotopy theory, Motivic homotopy theory, Universitext, Springer, Berlin, 2007, pp. 147-221. 2334215 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.