×

Surface tension models for a multi-material ALE code with AMR. (English) Zbl 1390.76080

Summary: A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE-AMR, which combines arbitrary Lagrangian Eulerian (ALE) hydrodynamics with adaptive mesh refinement (AMR). ALE-AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. Based on the results, the height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.

MSC:

76D45 Capillarity (surface tension) for incompressible viscous fluids
76X05 Ionized gas flow in electromagnetic fields; plasmic flow

Software:

SAMRAI; CHIC
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Breil, J.; Galera, S.; Maire, P.-H., Multi-material ale computation in inertial confinement fusion code chic, Comput Fluids, 46, 161-167, (2011) · Zbl 1433.76190
[2] Zimmerman, G. B.; Kruer, W. L., Lasnex paper, Comments Plasma Phys Control Fusion, 2, 51, (1975)
[3] Marinak, M. M.; Haan, S. W.; Dittrich, T. R.; Tipton, R. E.; Zimmerman, G. B., A comparison of three-dimensional multimode hydrodynamic instability growth on various national ignition facility capsule designs with hydra simulations, Phys Plasmas, 5, 1125, (1998)
[4] Holstein, P. A., Target physics for the megajoule laser (LMJ), Nucl Fusion, 44, S177-S184, (2004)
[5] Koniges, A.; Masters, N.; Fisher, A.; Eder, D.; Liu, W.; Anderson, R., Multi-material ALE with AMR for modeling hot plasmas and cold fragmenting materials, Plasma Sci Technol, 17, 117, (2015)
[6] Colella, P., Multidimensional upwind methods for hyperbolic conservation laws, J Comput Phys, 87, (1990) · Zbl 0694.65041
[7] Anderson, R. W.; Elliott, N. S.; Pember, R. B., An arbitrary Lagrangian-Eulerian method with adaptive mesh refinement for the solution of the Euler equations, J Comput Phys, 199, 598-617, (2004) · Zbl 1126.76348
[8] Hornung, R.; Kohn, S., Managing application complexity in the samrai object-oriented framework, Concurrency, 14, 347-368, (2002) · Zbl 1008.68527
[9] Fisher, A.; Masters, N.; Dixit, P.; Benson, D.; Koniges, A.; Anderson, R., Hierarchical material models for fragmentation modeling in NIF-ALE-AMR, J Phys, 112, 022027, (2008)
[10] Eder, D. C.; Fisher, A. C.; Koniges, A. E.; Masters, N. D., Modelling debris and shrapnel generation in inertial confinement fusion experiments, Nucl Fusion, 53, 113037, (2013)
[11] Koniges, A. E., Modeling warm dense matter experiments using the 3d ALE-AMR code and the move toward exascale computing, EPJ Web Conf, 59, 09006, (2013)
[12] Koniges, A.; Debonnel, C.; Andrew, J.; Eder, D.; Kalantar, D.; Masters, N., Experiments for the validation of debris and shrapnel calculations, J Phys, 112, 032072, (2008)
[13] Eder, D.; Bailey, D.; Bertozzi, A.; Fisher, A.; Koniges, A.; Liu, W., Late-time numerical simulations of high-energy-density (hed) targets, Twenty second international conference on numerical simulations of plasmas, (2011)
[14] Schafgans, A. A.; Brown, D. J.; Fomenkov, I. V.; Sandstrom, R.; Ershov, A.; Vaschenko, G., Advancements in predictive plasma formation modeling, Proc. SPIE 9776, (2016), Extreme Ultraviolet (EUV) Lithography VII
[15] Liu, W.; Bertozzi, A. L.; Kolokolnikov, T., Diffuse interface surface tension models in an expanding flow, Comm Math Sci, 10, 1, 387-418, (2012) · Zbl 1272.35025
[16] Hysing, S., A new implicit surface tension implementation for interfacial flows, Int J Numer Methods Fluids, 51, 6, 659-672, (2006) · Zbl 1158.76350
[17] Gauer, M.; Hannemann, V.; Hannemann, K., Implementation of the VOF method in the DLRTAU code, 45th AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit, 4863, (2009)
[18] Denner, F.; van Wachem, B. G., Fully-coupled balanced-force VOF framework for arbitrary meshes with least-squares curvature evaluation from volume fractions, Numer Heat Transfer Part B, 65, 3, 218-255, (2014)
[19] Anderson, D.; McFadden, G. B.; Wheeler, A., Diffuse-interface methods in fluid mechanics, Annu Rev Fluid Mech, 30, 1, 139-165, (1998)
[20] Brackbill, J. U.; Kothe, D. B.; Zemach, C., A continuum method for modeling surface tension, J Comput Phys, 100, 335-354, (1992) · Zbl 0775.76110
[21] Cummins, S. J.; Francois, M. M.; Kothe, D. B., Estimating curvature from volume fractions, Comput Struct, 83, 425-434, (2005)
[22] Afkhami, S.; Bussmann, M., Height functions for applying contact angles to 3d VOF simulations, Int J Numer Methods Fluids, 61, 8, 827-847, (2009) · Zbl 1252.76057
[23] López, J.; Hernández, J., On reducing interface curvature computation errors in the height function technique, J Comput Phys, 229, 13, 4855-4868, (2010) · Zbl 1308.76210
[24] Malik, M.; Fan, E. S.-C.; Bussmann, M., Adaptive VOF with curvature-based refinement, Int J Numer Methods Fluids, 55, 7, 693-712, (2007) · Zbl 1127.76048
[25] Wilkins, M. L., Computer simulation of dynamic phenomena, (1999), Springer Verlag · Zbl 0926.76001
[26] Wilkins, M. L., Use of artificial viscosity in multidimensional fluid dynamic calculations, J Comput Phys, 36, 281-303, (1980) · Zbl 0436.76040
[27] Pember, R. B.; Anderson, R. W., A comparison of staggered-mesh Lagrange plus remap and cell- centered direct eulerian Godunov schemes for Eulerian shock hydrodynamics, Nuclear Explosives Code Developers Collaborations (NECDC) 2000 UCRL-JC-139820, (2000), Lawrence Livermore National Laboratory
[28] Masters, N. D.; N. D; Anderson, R.; Elliot, N.; Fisher, A.; Gunney, B., Interface reconstruction in two-and three-dimensional arbitrary Lagrangian-Eulerian adaptive mesh refinement simulations, J Phys, 112, 022017, (2008)
[29] Jun, B., A simple advection scheme for material interface, Tech. Rep., (2011), UCRL-JC-139912, Lawrence Livermore National Laboratory
[30] Pember, R.; Anderson, R., Comparison of direct Eulerian Godunov and Lagrange plus remap, artificial viscosity schemes, Proc 15th American institute of aeronautics and astronautics computational fluid dynamics conference, Anaheim, CA, (2001)
[31] Kothe, D.; Williams, M.; Lam, K.; Korzekwa, D.; Tubesing, P.; Puckett, E., A second-order accurate, linearity-preserving volume tracking algorithm for free surface flows on 3d unstructured meshes, Proceedings of the 3rd ASME/JSME joint fluids engineering conference, San Francisco, CA, 18-22, (1999), Citeseer
[32] Flanagan, D.; Belytschko, T., A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int J Numer Methods Eng, 17, 679-706, (1981) · Zbl 0478.73049
[33] Christensen, R., Godunov methods on a staggered mesh an improved artificial viscosity, Technical Report UCRL-JC-105269, (1990), Lawrence Livermore National Laboratory
[34] Margolin, L.; Pyun, J., A method for treating hourglass patterns, Technical Report LA-UR-87-439, (1987), Los Alamos National Laboratory
[35] Nadiga, B. T.; Zaleski, S., Investigations of a two-phase fluid model, Eur J Mech B, 15, 885-896, (1996) · Zbl 0886.76097
[36] Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G., Modelling merging and fragmentation in multiphase flows with surfer, J Comput Phys, 113, 134-147, (1994) · Zbl 0809.76064
[37] Jamet, D.; Torres, D.; Brackbill, J., On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method, J Comput Physics, 182, 262-276, (2002) · Zbl 1058.76597
[38] Padula, M., On the exponential decay to the rest state for a viscous isothermal fluid, J Fluid Mech Anal, 1, 1, 62-73, (1998)
[39] Young, D.; Corey, E., Release of new leos equation of state library, (1998), Lawerence Livermore National Laboratory unpublished memo
[40] Francois, M.; Swartz, B., Interface curvature via volume fractions, heights and mean values on nonuniform rectangular grids, J Comput Physics, 229, 2, 527-540, (2010) · Zbl 1182.65040
[41] Mason, G., An experimental determination of the stable length of cylindrical liquid bubbles, J Colloid Interface Sci, 32, 172, (1970)
[42] Schafgans, A. A.; Brown, D. J.; Fomenkov, I. V.; Sandstrom, R.; Ershov, A.; Vaschenko, G., Performance optimization of MOPA pre-pulse LPP light source, SPIE advanced lithography, (2015), International Society for Optics and Photonics
[43] More, R. M.; Warren, K. H.; Young, D. A.; Zimmerman, G. B., A new Quotidian equation of state (QEOS) for hot dense matter, The Physics of Fluids, 31, 10, 3059-3078, (1988) · Zbl 0654.76042
[44] Young, D. A.; Corey, E. M., A new global equation of state model for hot, dense matter, Journal of Applied Physics, 78, 6, 3748-3755, (1995)
[45] Young, D. A., Phase diagrams of the elements, (1991), Univ of California Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.