A mathematical programming formulation for the Hartree-Fock problem on open-shell systems. (English) Zbl 1428.90161

Summary: The solutions of the time-independent Schrödinger equation provide a quantum description of the stationary state of electrons in atoms and molecules. The Hartree-Fock problem consists in expressing these solutions by means of finite dimensional approximations thereof. These are themselves linear combinations of an existing linearly independent set; best approximations are obtained when a certain energy function is minimized. In [C. Lavor et al., “Solving Hartree-Fock systems with global optimization methods”, Europhys. Lett. 5, No. 77, 50006p1–50006p5 (2007; doi:10.1209/0295-5075/77/50006)] we proposed a new mathematical programming (MP) approach which enhanced the likelihood of attaining globally optimal approximations, limited to closed-shell atomic systems. In this paper, we discuss an extension to open-shell systems: this is nontrivial as it requires the expression of a rank constraint within an MP formulation. We achieve this by explicitly modelling eigenvalues and requiring them to be nonzero. Although our approach might not necessarily scale well, we show it works on two open-shell systems (lithium and boron).


90C30 Nonlinear programming
90C90 Applications of mathematical programming


Full Text: DOI


[1] Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4), 597-634 (2009) · Zbl 1179.90237
[2] Blumenthal, L.: Theory and Applications of Distance Geometry. Oxford University Press, Oxford (1953) · Zbl 0050.38502
[3] Cardozo, T., Chaer Nascimento, M.: Private communication (2012)
[4] COIN-OR: Introduction to IPOPT: A tutorial for downloading, installing, and using IPOPT (2006)
[5] Fletcher, R., Leyffer, S.: User manual for FILTER. Technical Report, University of Dundee, London (1999)
[6] Fourer, R., Gay, D.: The AMPL Book. Duxbury Press, Pacific Grove (2002)
[7] Gill, P.: User’s Guide for SNOPT 5.3. Systems Optimization Laboratory. Department of EESOR, Stanford University, California (1999)
[8] Hollauer, E., Nascimento, M.: A generalized multistructural wave function. J. Chem. Phys. 99, 1207 (1993)
[9] Janes, P.: Rigorous numerical approaches in electronic structure theory. Ph.D. Thesis, Australian National University (2011)
[10] Janes, P., Rendell, A.: Deterministic global optimization in ab-initio quantum chemistry. J. Glob. Optim. 56(2), 537-558 (2013) · Zbl 1275.90065
[11] Lavor, C., Cardozo, T., Nascimento, M.A.C.: Using an interval branch-and-bound algorithm in the Hartree-Fock method. Int. J. Quantum Chem. 103, 500-504 (2005)
[12] Lavor, C., Liberti, L., Maculan, N., Chaer Nascimento, M.: Solving Hartree-Fock systems with global optimization methods. Europhys. Lett. 5(77), 50006p1-50006p5 (2007)
[13] Levine, I.: Quantum Chemistry, 2nd edn. Prentice-Hall, Upper Saddle River (2000)
[14] Liberti, L.: Reformulations in mathematical programming: definitions and systematics. RAIRO-RO 43(1), 55-86 (2009) · Zbl 1158.90390
[15] Liberti, L.: Modelling rank constraints in mathematical programming. In: Pickl, S., et al. (eds.) Proceedings of the 11th Cologne-Twente Workshop on Graphs and Combinatorial Optimization. Universität der Bundeswehr, München (2012) · Zbl 1242.90236
[16] Liberti, L.: Reformulations in mathematical programming: automatic symmetry detection and exploitation. Math. Program. A 131, 273-304 (2012) · Zbl 1235.90103
[17] Liberti, L.; Lee, J. (ed.); Leyffer, S. (ed.), Symmetry in mathematical programming, No. 154, 263-286 (2012), New York · Zbl 1242.90236
[18] Liberti, L., Lavor, C., Nascimento, M.C., Maculan, N.: Reformulation in mathematical programming: an application to quantum chemistry. Discrete Appl. Math. 157, 1309-1318 (2009) · Zbl 1173.90494
[19] Martin, R.: Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, Cambridge (2004) · Zbl 1152.74303
[20] Murray, W., Gill, P., Raman, R., Kalvelagen, E.: GAMS/MINOS: a solver for large-scale nonlinear optimization problems. Technical Report, CiteSeerX (2007)
[21] Penrose, R.: The Road to Reality. Knopf, New York (2004)
[22] Rendl, F.: Semidefinite relaxations for partitioning, assignment and ordering problems. 4OR 10(4), 321-346 (2012) · Zbl 1262.90150
[23] Schoen, F.; Pardalos, P. (ed.); Romeijn, H. (ed.), Two-phase methods for global optimization, No. 2, 151-177 (2002), Dordrecht
[24] Schrödinger, E.: Quantisierung als Eigenwertproblem. Ann. Phys. 384, 361-377 (1926) · JFM 52.0965.08
[25] Solis, F., Wets, R.: Minimization of random search techniques. Math. Oper. Res. 6(1), 19-30 (1981) · Zbl 0502.90070
[26] Spellucci, P.: DONLP2 Users Guide. TU Darmstadt, Darmstadt (2009)
[27] Szabo, A., Ostlund, N.: Modern Quantum Chemistry. McGraw-Hill, New York (1989)
[28] Zorn, K., Sahinidis, N.: Hartree fock self-consistent calculations: global optimization of electronic structure. In: Proceedings of 10th AIChE Annual Meeting. AIChE (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.