Deshwal, Sheetal; Srivastav, Rupesh K.; Prasad, Gopi Approximation by modified Post-Widder operators. (English) Zbl 07738427 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 30, No. 1, 67-81 (2023). MSC: 41A10 41A25 41A28 41A35 41A36 PDF BibTeX XML Cite \textit{S. Deshwal} et al., J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 30, No. 1, 67--81 (2023; Zbl 07738427) Full Text: DOI
Yadav, R.; Meĭkher, R.; Mishra, V. N. Approximation properties by some modified Szasz-Mirakjan-Kantorovich operators. (Russian. English summary) Zbl 1512.41012 Sib. Zh. Vychisl. Mat. 25, No. 2, 209-225 (2022). MSC: 41A25 41A35 41A36 PDF BibTeX XML Cite \textit{R. Yadav} et al., Sib. Zh. Vychisl. Mat. 25, No. 2, 209--225 (2022; Zbl 1512.41012) Full Text: DOI arXiv MNR
Mishra, Vishnu Narayan; Yadav, Rishikesh Approximation on a new class of Szász-Mirakjan operators and their extensions in Kantorovich and Durrmeyer variants with applicable properties. (English) Zbl 1491.41010 Georgian Math. J. 29, No. 2, 245-273 (2022). Reviewer: Neha Malik (New Delhi) MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{V. N. Mishra} and \textit{R. Yadav}, Georgian Math. J. 29, No. 2, 245--273 (2022; Zbl 1491.41010) Full Text: DOI
Alotaibi, Abdullah; Özger, Faruk; Mohiuddine, S. A.; Alghamdi, Mohammed A. Approximation of functions by a class of Durrmeyer-Stancu type operators which includes Euler’s beta function. (English) Zbl 1485.41009 Adv. Difference Equ. 2021, Paper No. 13, 14 p. (2021). MSC: 41A35 41A36 41A25 41A10 41A17 PDF BibTeX XML Cite \textit{A. Alotaibi} et al., Adv. Difference Equ. 2021, Paper No. 13, 14 p. (2021; Zbl 1485.41009) Full Text: DOI
Çetin, Nursel Approximation by \(\alpha\)-Bernstein-Schurer operator. (English) Zbl 1488.41046 Hacet. J. Math. Stat. 50, No. 3, 732-743 (2021). MSC: 41A36 41A10 41A25 PDF BibTeX XML Cite \textit{N. Çetin}, Hacet. J. Math. Stat. 50, No. 3, 732--743 (2021; Zbl 1488.41046) Full Text: DOI
Gupta, Vijay; Muraru, Carmen Popescu; Radu, Voichiţa Adriana Convergence of certain hybrid operators. (English) Zbl 1477.41010 Rocky Mt. J. Math. 51, No. 4, 1249-1258 (2021). Reviewer: Neha Malik (New Delhi) MSC: 41A25 41A30 41A81 PDF BibTeX XML Cite \textit{V. Gupta} et al., Rocky Mt. J. Math. 51, No. 4, 1249--1258 (2021; Zbl 1477.41010)
Çetin, Nursel; Acu, Ana-Maria Approximation by \(\alpha\)-Bernstein-Schurer-Stancu operators. (English) Zbl 1471.41011 J. Math. Inequal. 15, No. 2, 845-860 (2021). Reviewer: Ioan Raşa (Cluj-Napoca) MSC: 41A36 41A10 41A25 PDF BibTeX XML Cite \textit{N. Çetin} and \textit{A.-M. Acu}, J. Math. Inequal. 15, No. 2, 845--860 (2021; Zbl 1471.41011) Full Text: DOI
Gupta, Vijay; Agrawal, P. N. Aproximation by modified Păltǎnea operators. (English) Zbl 1499.41031 Publ. Inst. Math., Nouv. Sér. 107(121), 157-164 (2020). MSC: 41A25 41A30 PDF BibTeX XML Cite \textit{V. Gupta} and \textit{P. N. Agrawal}, Publ. Inst. Math., Nouv. Sér. 107(121), 157--164 (2020; Zbl 1499.41031) Full Text: DOI
Ada, Gülsüm Ulusoy Genuine modified Baskakov-Durrmeyer operators. (English) Zbl 1488.41039 Facta Univ., Ser. Math. Inf. 35, No. 4, 1145-1155 (2020). MSC: 41A36 41A25 41A35 PDF BibTeX XML Cite \textit{G. U. Ada}, Facta Univ., Ser. Math. Inf. 35, No. 4, 1145--1155 (2020; Zbl 1488.41039) Full Text: DOI
Holhoş, Adrian The product of two functions using positive linear operators. (English) Zbl 1463.41053 Constr. Math. Anal. 3, No. 2, 64-74 (2020). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{A. Holhoş}, Constr. Math. Anal. 3, No. 2, 64--74 (2020; Zbl 1463.41053) Full Text: DOI
Başcanbaz-Tunca, Gülen; Erençin, Ayşegül; İnce-İlarslan, Hatice Gül Quantitative estimates for modified beta operators. (English) Zbl 1474.41048 Mat. Vesn. 71, No. 4, 359-367 (2019). MSC: 41A36 PDF BibTeX XML Cite \textit{G. Başcanbaz-Tunca} et al., Mat. Vesn. 71, No. 4, 359--367 (2019; Zbl 1474.41048) Full Text: Link Link
Çetin, Nursel; Radu, Voichiţa Adriana Approximation by generalized Bernstein-Stancu operators. (English) Zbl 1434.41014 Turk. J. Math. 43, No. 4, 2032-2048 (2019). MSC: 41A36 41A10 41A25 PDF BibTeX XML Cite \textit{N. Çetin} and \textit{V. A. Radu}, Turk. J. Math. 43, No. 4, 2032--2048 (2019; Zbl 1434.41014) Full Text: Link
Kajla, Arun; Deshwal, Sheetal; Agrawal, P. N. Quantitative Voronovskaya and Grüss-Voronovskaya type theorems for Jain-Durrmeyer operators of blending type. (English) Zbl 1428.41027 Anal. Math. Phys. 9, No. 3, 1241-1263 (2019). MSC: 41A36 41A25 26A15 PDF BibTeX XML Cite \textit{A. Kajla} et al., Anal. Math. Phys. 9, No. 3, 1241--1263 (2019; Zbl 1428.41027) Full Text: DOI
Acu, Ana-Maria; Acar, Tuncer; Radu, Voichiţa Adriana Approximation by modified \(U^{\rho }_n\) operators. (English) Zbl 1423.41028 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2715-2729 (2019). Reviewer: Zoltán Finta (Cluj-Napoca) MSC: 41A36 41A10 41A25 PDF BibTeX XML Cite \textit{A.-M. Acu} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2715--2729 (2019; Zbl 1423.41028) Full Text: DOI
Garg, Tarul; Acu, Ana Maria; Agrawal, Purshottam Narain Further results concerning some general Durrmeyer type operators. (English) Zbl 1429.41023 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2373-2390 (2019). Reviewer: Alexei Lukashov (Saratov) MSC: 41A36 41A10 41A25 41A60 PDF BibTeX XML Cite \textit{T. Garg} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2373--2390 (2019; Zbl 1429.41023) Full Text: DOI
Agrawal, Purshottam Narain; Baxhaku, Behar; Chauhan, Ruchi Quantitative Voronovskaya- and Grüss-Voronovskaya-type theorems by the blending variant of Szász operators including Brenke-type polynomials. (English) Zbl 1424.41040 Turk. J. Math. 42, No. 4, 1610-1629 (2018). MSC: 41A36 26A15 41A25 41A28 PDF BibTeX XML Cite \textit{P. N. Agrawal} et al., Turk. J. Math. 42, No. 4, 1610--1629 (2018; Zbl 1424.41040) Full Text: DOI
Acar, Tuncer Quantitative \(q\)-Voronovskaya and \(q\)-Grüss-Voronovskaya-type results for \(q\)-Szász operators. (English) Zbl 1351.41020 Georgian Math. J. 23, No. 4, 459-468 (2016). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{T. Acar}, Georgian Math. J. 23, No. 4, 459--468 (2016; Zbl 1351.41020) Full Text: DOI
Ulusoy, Gulsum; Acar, Tuncer \(q\)-Voronovskaya type theorems for \(q\)-Baskakov operators. (English) Zbl 1347.41030 Math. Methods Appl. Sci. 39, No. 12, 3391-3401 (2016). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{G. Ulusoy} and \textit{T. Acar}, Math. Methods Appl. Sci. 39, No. 12, 3391--3401 (2016; Zbl 1347.41030) Full Text: DOI
Acar, Tuncer; Aral, Ali; Rasa, Ioan The new forms of Voronovskaya’s theorem in weighted spaces. (English) Zbl 1334.41015 Positivity 20, No. 1, 25-40 (2016). MSC: 41A25 41A36 PDF BibTeX XML Cite \textit{T. Acar} et al., Positivity 20, No. 1, 25--40 (2016; Zbl 1334.41015) Full Text: DOI
Acar, Tuncer Asymptotic formulas for generalized Szász-Mirakyan operators. (English) Zbl 1410.41025 Appl. Math. Comput. 263, 233-239 (2015). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{T. Acar}, Appl. Math. Comput. 263, 233--239 (2015; Zbl 1410.41025) Full Text: DOI
Amato, Umberto; Della Vecchia, Biancamaria New results on rational approximation. (English) Zbl 1316.41011 Result. Math. 67, No. 3-4, 345-364 (2015). MSC: 41A20 41A25 41A36 PDF BibTeX XML Cite \textit{U. Amato} and \textit{B. Della Vecchia}, Result. Math. 67, No. 3--4, 345--364 (2015; Zbl 1316.41011) Full Text: DOI