×

Existence results to some damped-like fractional differential equations. (English) Zbl 1401.34015

Summary: In this paper, by using critical point theory and variational methods, we prove the existence of weak solutions for damped-like fractional differential equations. We given some new criteria to distinguish that the fractional boundary value problems have at least one solution. Some examples are also given to illustrate the main results.

MSC:

34A08 Fractional ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
47H10 Fixed-point theorems
34B37 Boundary value problems with impulses for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hilfer R., Applications of fractional calculus in physics, World Scientific Publishing Co., Singapore, 2000. · Zbl 0998.26002
[2] Sabatier J., Agrawal O. P. and Tenreiro Machado J. A., Advances in fractional calculus, Dordrecht, Netherlands: Springer, 2007. · Zbl 1116.00014
[3] Baleanu D., K. Diethelm, Scalas E. and Trujillo J. J., Fractional calculus models and numerical methods, Series on Complexity, Nonlinearity and Chaos, World Scientific (2012). · Zbl 1248.26011
[4] El-Sayed A. M. A., Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal. 33 (1998), 181-186. · Zbl 0934.34055
[5] Kilbas A. A. and Trujillo J. J., Differential equations of fractional order: Methods, results and problems I, Appl. Anal. 78 (2001) 153-192. · Zbl 1031.34002
[6] Kilbas A. A. and Trujillo J. J., Differential equations of fractional order: Methods, results and problems II, Appl. Anal. 81 (2002), 435-493. · Zbl 1033.34007
[7] Podlubny I., Fractional differential equations, Academic Press, New York, 1999. · Zbl 0918.34010
[8] Podlubny I., The Laplace transform method for linear differential equations of fractional order, Slovac Academy of Science, Slovak Republic, 1994.
[9] Miller K. S. and Ross B., An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993. · Zbl 0789.26002
[10] Samko G., A. Kilbas and Marichev O., Fractional integrals and derivatives: Theory and applications, Gordon and Breach, Amsterdam, 1993. · Zbl 0818.26003
[11] Jiao F. and Zhou Y., Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl. 62 (2011), 1181-1199. · Zbl 1235.34017
[12] Nyamoradi N. and Zhou Y., Multiple solutions for a nonlinear fractional boundary value problems via variational methods, Fix Point Theory 17 (1) (2016), 111-122. · Zbl 1382.34009
[13] Jiao F. and Zhou Y., Existence results for fractional boundary value problem via critical point theory, Int. J. Bifurcation Chaos 22 (4) (2012), 1250086 (17 pages) doi: . · Zbl 1258.34015 · doi:10.1142/S0218127412500861
[14] Bai C., Existence of three solutions for a nonlinear fractional boundary value problem via a critical points theorem, Abst. Appl. Anal. 2012 (2012), Article ID 963105, 13 pages doi:. · Zbl 1253.34008 · doi:10.1155/2012/963105
[15] Bai C., Existence of solution for a nonlinear fractional boundary value problem via a local minimum theorem, Elect. J. Different Equ. 2012 (176) (2012), 1-9.
[16] Bin G., Multiple solutions for a class of fractional boundary value problems, Abst. Appl. Anal. 2012 (2012), Article ID 468980, 16 pages doi:. · Zbl 1253.34009 · doi:10.1155/2012/468980
[17] Sun H. R. and Zhang Q. G., Existence of solutions for a fractional boundary value problem via the Mountain Pass method and an iterative technique, Comput. Math. Appl. 64 (2012), 3436-3443. · Zbl 1268.34027
[18] Chen J. and Tang X. H., Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory, Abst. Appl. Anal. 2012 (2012), Article ID 648635, 21 pages doi:. · Zbl 1235.34011 · doi:10.1155/2012/648635
[19] Teng K., Jia H. and Zhang H., Existence and multiplicity results for fractional differential inclusions with Dirichlet boundary conditions, Appl. Math. Comput. (2012) (Preprint).
[20] Nyamoradi N. and Zhou Y., Infinitely many solutions for a perturbed nonlinear fractional boundary value problems depending on two parameters, Eur. Phys. J. Special Topics 222 (8) (2013), 1999-2013.
[21] Nieto J. J., Variational formulation of a damped Dirichlet impulsive problem, Appl. Math. Lett. 23 (2010), 940-942. · Zbl 1197.34041
[22] Xiao J. and Nieto J. J., Variational approach to some damped Dirichlet nonlinear impulsive differential equations, J. Franklin Inst. 348 (2011), 369-377. · Zbl 1228.34048
[23] Li X., Wu X. and Wu K., On a class of damped vibration problems with super-quadratic potentials, Nonlinear Anal. 72 (2010), 135-142. · Zbl 1186.34056
[24] Baia L. and Dai B., Solvability of a class of impulsive damped vibration problems, Math. Methods Appl. Sci. (2013). DOI: . · Zbl 1291.34055 · doi:10.1002/mma.2761
[25] Chen H. and He Z., Variational approach to some damped Dirichlet problems with impulses, Math. Methods Appl. Sci. 36 (2013), 2564-2575. · Zbl 1284.34038
[26] Meng F. J. and Zhang F. B., Periodic solutions for some second order systems, Nonlinear Anal. 68 (2008), 3388-3396. · Zbl 1169.34322
[27] Zhang X., Infinitely many solutions for a class of second-order damped vibration systems, Elect. J. Qualit. Theory Differ. Equ. 15 (2013), 1-18.
[28] Kilbas A. A., H. M. Srivastava and Trujillo J. J., Theory and applications of fractional differential equations, in: North-Holland mathematics studies, Vol. 204, Elsevier Science B.V., Amsterdam, 2006.
[29] Li Y. N., Sun H. R., Zhang Q. G., Existence of solutions to fractional boundary-value problms with a parameter, Electronic J. Different. Equ. 141 (2013), 1-12.
[30] Nyamoradi N., Multiplicity results for a class of fractional boundary value problems, Ann. Polonici Math. 109 (1) (2013), 59-73. · Zbl 1387.34009
[31] Mawhin J. and Willem M., Critical point theory and Hamiltonian systems, Springer-Verlag, Berlin, 1989. · Zbl 0676.58017
[32] Bartolo P., Benci V. and Fortunato D., Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity, Nonlinear Anal. 7 (1983), 981-1012. · Zbl 0522.58012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.