Greven, Andreas; Rippl, Thomas; Glöede, Patrick Branching processes – a general concept. (English) Zbl 1469.60272 ALEA, Lat. Am. J. Probab. Math. Stat. 18, No. 1, 635-706 (2021). MSC: 60J80 PDF BibTeX XML Cite \textit{A. Greven} et al., ALEA, Lat. Am. J. Probab. Math. Stat. 18, No. 1, 635--706 (2021; Zbl 1469.60272) Full Text: arXiv Link OpenURL
Glöde, Patric; Greven, Andreas; Rippl, Thomas Branching trees I: concatenation and infinite divisibility. (English) Zbl 1467.60076 Electron. J. Probab. 24, Paper No. 52, 55 p. (2019). MSC: 60K35 60E07 PDF BibTeX XML Cite \textit{P. Glöde} et al., Electron. J. Probab. 24, Paper No. 52, 55 p. (2019; Zbl 1467.60076) Full Text: DOI arXiv Euclid OpenURL
Gufler, Stephan Pathwise construction of tree-valued Fleming-Viot processes. (English) Zbl 1390.60350 Electron. J. Probab. 23, Paper No. 42, 58 p. (2018). MSC: 60K35 60J25 60G09 92D10 PDF BibTeX XML Cite \textit{S. Gufler}, Electron. J. Probab. 23, Paper No. 42, 58 p. (2018; Zbl 1390.60350) Full Text: DOI arXiv Euclid OpenURL
Gufler, Stephan A representation for exchangeable coalescent trees and generalized tree-valued Fleming-Viot processes. (English) Zbl 1390.60125 Electron. J. Probab. 23, Paper No. 41, 42 p. (2018). MSC: 60G09 60J25 60K35 92D10 PDF BibTeX XML Cite \textit{S. Gufler}, Electron. J. Probab. 23, Paper No. 41, 42 p. (2018; Zbl 1390.60125) Full Text: DOI arXiv Euclid OpenURL