Saint-Venant problem for solids with helical anisotropy. (English) Zbl 1348.74121

Summary: We discuss the solution of Saint-Venant’s problem for solids with helical anisotropy. Here the governing relations of the theory of elasticity in terms of displacements were presented using the helical coordinate system. We proposed an approach to construct elementary Saint-Venant solutions using integration of ordinary differential equations with variable coefficients in the case of a circular cylinder with helical anisotropy. Elementary solutions correspond to problems of extension, of torsion, of pure bending and of bending of shear force. The solution of the problem is obtained using small parameter method for small values of twist angle and numerically for arbitrary values. Numeric results correspond to problems of extension-torsion. Dependencies of the stiffness matrix (in dimensionless form) on angle between the tangent to the helical coil and the axis of the cylinder corresponding to stiffness on stretching and torsion are illustrated graphically for different values of material and geometrical parameters.


74G50 Saint-Venant’s principle
35Q74 PDEs in connection with mechanics of deformable solids
Full Text: DOI


[1] Andreaus, U.; Placidi, L.; Rega, G., Soft impact dynamics of a cantilever beam: equivalent SDOF model versus infinite-dimensional system, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 225, 2444-2456, (2011)
[2] Antman S.S.: Nonlinear Problems of Elasticity, vol. 107. Applied Mathematical Sciences. Springer, New York (1995) · Zbl 0820.73002
[3] Batra, R., Saint-venant’s principle for a helical spring, J. Appl. Mech. Trans. ASME, 45, 297-301, (1978) · Zbl 0386.73008
[4] Batra, R.; Yang, J., Saint-venant’s principle for linear elastic porous materials, J. Elast., 39, 265-271, (1995) · Zbl 0831.73006
[5] Batra, R.; Yang, J., Saint-venant’s principle in linear piezoelectricity, J. Elast., 38, 209-218, (1995) · Zbl 0828.73061
[6] Batra, R.; Zhong, X., Saint-venant’s principle for a helical piezoelectric body, J. Elast., 43, 69-79, (1996) · Zbl 0878.73057
[7] Batra, R.C., Saint-venant’s principle for a micropolar helical body, Acta Mech., 42, 99-109, (1982) · Zbl 0478.73005
[8] Berdichevskii, V.L.; Starosel’skii, L.A., Bending, extension, and torsion of naturally twisted rods, J. Appl. Math. Mech., 49, 746-755, (1985) · Zbl 0613.73009
[9] Berglund, K., Generalization of saint-venant’s principle to micropolar continua, Arch. Rational Mech. Anal., 64, 317-326, (1977) · Zbl 0402.73014
[10] Bîrsan, M., On saint-venant’s principle in the theory of Cosserat elastic shells, Int. J. Eng. Sci., 45, 187-198, (2007) · Zbl 1213.74214
[11] Bîrsan, M.; Altenbach, H.; Sadowski, T.; Eremeyev, V.; Pietras, D., Deformation analysis of functionally graded beams by the direct approach, Compos. Part B Eng., 43, 1315-1328, (2012)
[12] Cao, J.; Akkerman, R.; Boisse, P.; Chen, J.; Cheng, H.; De Graaf, E.; Gorczyca, J.; Harrison, P.; Hivet, G.; Launay, J.; etal., Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results, Compos. Part A Appl. Sci. Manuf., 39, 1037-1053, (2008)
[13] Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids 2014). doi:10.1177/1081286514531265 · Zbl 0992.74032
[14] Chirita, S.; Aron, M., On saint-venant’s principle in micropolar elasticity, Int. J. Eng. Sci., 32, 1893-1901, (1994) · Zbl 0899.73065
[15] Chirita, S.; Ciarletta, M.; Fabrizio, M., Saint-venant’s principle in linear viscoelasticity, Int. J. Eng. Sci., 35, 1221-1236, (1997) · Zbl 0917.73028
[16] Cristensen R.M.: Mechanics of Composite Matherials. Wiley, New York (1979)
[17] De Cicco, S.; Nappa, L., On saint-venant’s principle for micropolar viscoelastic bodies, Int. J. Eng. Sci., 37, 883-893, (1999) · Zbl 1210.74079
[18] Dell’Isola, F.; Batra, R.C., Saint-venant’s problem for porous linear elastic materials, J. Elast., 47, 73-81, (1997) · Zbl 0891.73011
[19] Dell’Isola, F.; Rosa, L., Perturbation methods in torsion of thin hollow Saint-Venant cylinders, Mech. Res. Commun., 23, 145-150, (1996) · Zbl 0878.73014
[20] Dell’Isola, F.; Ruta, G.C., Perturbation series for shear stress in flexure of Saint-Venant cylinders with bredt-like sections, Mech. Res. Commun., 23, 557-564, (1996) · Zbl 0896.73009
[21] Dell’Isola, F.; Steigmann, D., A two-dimensional gradient-elasticity theory for woven fabrics, J. Elast., 118, 113-125, (2015) · Zbl 1305.74024
[22] Dong, S.; Kosmatka, J.; Lin, H., On saint-venant’s problem for an inhomogeneous, anisotropic cylinder: part I—methodology for Saint-Venant solutions, J. Appl. Mech. Trans. ASME, 68, 376-381, (2001) · Zbl 1110.74419
[23] Getman, I.P.; Ustinov, Y.A., Methods of analysing ropes. the extension-torsion method, J. Appl. Math. Mech., 72, 48-53, (2008)
[24] Ghosh, A.; Fischer, P., Controlled propulsion of artificial magnetic nanostructured propellers, Nano Lett., 9, 2243-2245, (2009)
[25] Girchenko, A.A.; Eremeyev, V.A.; Altenbach, H., Interaction of a helical shell with a nonlinear viscous fluid, Int. J. Eng. Sci., 61, 53-58, (2012) · Zbl 06923903
[26] Greco, L.; Cuomo, M., An implicit G1 multi patch B-spline interpolation for Kirchhoff-love space rod, Comput. Methods Appl. Mech. Eng., 269, 173-197, (2014) · Zbl 1296.74049
[27] Hodges, D.H.: Nonlinear Composite Beam Theory, vol. 213. American Institute of Aeronautics and Astronautics, Reston (2006) · Zbl 0355.73013
[28] Horgan, C.; Knowles, J., The effect of nonlinearity on a principle of a Saint-Venant type, J. Elast., 11, 271-291, (1981) · Zbl 0463.73007
[29] Horgan, C.; Payne, L., Saint-venant’s principle in linear isotropic elasticity for incompressible or nearly incompressible materials, J. Elast., 46, 43-52, (1997) · Zbl 0907.73010
[30] Horgan, C.O., Recent developments concerning saint-venant’s principle: a second update, Appl. Mech. Rev., 49, s101-s111, (1996)
[31] Horgan, C.O.; Knowles, J.K., Recent developments concerning saint-venant’s principle, Adv. Appl. Mech., 23, 179-269, (1983) · Zbl 0569.73010
[32] Horgan, C.O.; Simmonds, J.G., Saint-Venant end effects in composite structures, Compos. Eng., 4, 279-286, (1994)
[33] Ieşan, D., Saint-venant’s problem for inhomogeneous and anisotropic elastic bodies, J. Elast., 6, 277-294, (1976) · Zbl 0355.73013
[34] Ieşan, D., Saint-venant’s problem for inhomogeneous bodies, Int. J. Eng. Sci., 14, 353-360, (1976) · Zbl 0328.73010
[35] Ieşan D.: Saint-Venant’s Problem. Springer, Berlin (1987) · Zbl 0625.73030
[36] Ieşan D.: Classical and Generalized Models of Elastic Rods. CRC Press, Boca Raton (2008)
[37] Ieşan, D., Chiral effects in uniformly loaded rods, J. Mech. Phys. Solids, 58, 1272-1285, (2010) · Zbl 1208.74071
[38] Kargin, D.P.; Kurbatova, N.V.; Ustinov, Y.A., Homogeneous solutions and Saint-Venant problems for a helical spring, Appl. Math. Mech., 62, 641-648, (1998)
[39] Kasyanov, V.; Ozolanta, I.; Purinya, B.; Ozols, A.; Kancevich, V., Compliance of a biocomposite vascular tissue in longitudinal and circumferential directions as a basis for creation of artificial substitutes, Mech. Compos. Mater., 39, 347-358, (2003)
[40] Knops, R.; Payne, L., A Saint-Venant principle for nonlinear elasticity, Arch. Ration. Mech. Anal., 81, 1-12, (1983) · Zbl 0519.73005
[41] Kurbatova, N.V., Ustinov, Y.A.: The Saint-Venant problems for rods with physical and geometrical anisotropy (in Russian). Izvestia of Universities. North-Caucasus. Region. Math. Model. Natural Science. Special Issue, pp. 154-157 (2001)
[42] Lakes, R., Elastic and viscoelastic behavior of chiral materials, Int. J. Mech. Sci., 43, 1579-1589, (2001) · Zbl 1049.74012
[43] Madeo, A., Ferretti, M., Dell’Isola, F., Boisse, P.: Thick fibrous composite reinforcements behave as special second-gradient materials: three-point bending of 3d interlocks. Zeitschrift für angewandte Mathematik und Physik, pp. 1-20 (2015) · Zbl 1329.74060
[44] Pedley T.J.: The Fluid Mechanics Blood Vessels. Cambridge University Press, New York (1980) · Zbl 0449.76100
[45] Percec, V.; Dulcey, A.E.; Balagurusamy, V.S.K.; Miura, Y.; Smidrkal, J.; Peterca, M.; Hummelin, S.; Edlund, U.; Hudson, S.D.; Heiney, P.A.; Duan, H.; Magonev, S.N.; Vinogradov, S.A., Analysis of stress-strain state of the naturally twisted rod bending by transverse force on the basis of the finite element method, Nature, 430, 764-768, (2004)
[46] Pobedria B.E.: Mechanics of Composites (in Russian). Moscow State University Press, Moscow (1984)
[47] Romanova, N.M.; Ustinov, Y.A., The Saint-Venant problem of the bending of a cylinder with helical anisotropy, J. Appl. Math. Mech., 72, 481-488, (2008) · Zbl 1182.74035
[48] Ruan, X.; Danforth, S.; Safari, A.; Chou, T.W., Saint-Venant end effects in piezoceramic materials, Int. J. Solids Struct., 37, 2625-2637, (2000) · Zbl 0992.74032
[49] Saint-Venant, A.J.C.B.: Memoire sur la torsion des prismes. Mem. Savants Etrangers 14, 233-560 (1856)
[50] Svetlitsky V.A.: Statics of Rods. Springer, Berlin (2000) · Zbl 0967.74002
[51] Tarn, J.Q.; Huang, L.J., Saint-Venant end effects in multilayered piezoelectric laminates, Int. J. Solids Struct., 39, 4979-4998, (2002) · Zbl 1042.74015
[52] Thwaites, J.J., The elastic deformation of a rod with helical ansiotropy, Mech. Sci., 19, 161-168, (1977)
[53] Trabucho, L.; Viano, J.M.; Ciarlet, P.G. (ed.); Lions, J.L. (ed.), Mathematical modelling of rods, 487-974, (1996), Amsterdam · Zbl 0873.73041
[54] Ustinov, Y.; Kurbatova, N.V.; Chumakova, S., Analysis of stress-strain state of the naturally twisted rod bending by transverse force on the basis of the finite element method (in Russian), Vladikakazian Math. J., 15, 45-53, (2013) · Zbl 1302.74169
[55] Ustinov, Y.A., Saint-Venant problems for a bar with a screw anisotropy, Doklady Phys., 46, 756-759, (2001)
[56] Ustinov Y.A.: Saint-Venant Problem for Pseudo-Cylinder (in Russian). Nauka, Moscow (2003) · Zbl 1067.74514
[57] Ustinov, Y.A., Solutions of the Saint-Venant problem for a cylinder with helical anisotropy, J. Appl. Math. Mech., 67, 89-98, (2003)
[58] Ustinov, Y.A., A model of the helical pulsed flow of blood in arteries, Doklady Phys., 49, 543-547, (2004)
[59] Zubov, L.M., The non-linear Saint-Venant problem of the torsion, stretching and bending of a naturally twisted rod, J. Appl. Math. Mech., 70, 300-310, (2006)
[60] Zubov, L.M., The problem of the equilibrium of a helical spring in the non-linear three-dimensional theory of elasticity, J. Appl. Math. Mech., 71, 519-526, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.