Kusraev, A. G.; Kutateladze, S. S. Boolean-valued analysis of order-bounded operators. (English. Russian original) Zbl 1440.47035 J. Math. Sci., New York 218, No. 5, 609-635 (2016); translation from Fundam. Prikl. Mat. 19, No. 5, 89-126 (2014). Summary: This is a survey of some recent applications of Boolean-valued models of set theory to the study of order-bounded operators in vector lattices. MSC: 47B65 Positive linear operators and order-bounded operators 03E75 Applications of set theory 46A40 Ordered topological linear spaces, vector lattices 47-02 Research exposition (monographs, survey articles) pertaining to operator theory Keywords:order-bounded operator; vector lattice; Boolean-valued analysis PDF BibTeX XML Cite \textit{A. G. Kusraev} and \textit{S. S. Kutateladze}, J. Math. Sci., New York 218, No. 5, 609--635 (2016; Zbl 1440.47035); translation from Fundam. Prikl. Mat. 19, No. 5, 89--126 (2014) Full Text: DOI arXiv OpenURL References: [1] Abramovich, YA; Kitover, AK, \(d\)-independence and \(d\)-bases in vector lattices, Rev. Roum. Math. Pures Appl., 44, 667-682, (1999) · Zbl 1071.46007 [2] Y. A. Abramovich and A. K. Kitover, Inverses of Disjointness Preserving Operators, Mem. Amer. Math. Soc., Vol. 679, Amer. Math. Soc, Providence (2000). · Zbl 0974.47032 [3] Abramovich, YA; Kitover, AK, \(d\)-independence and \(d\)-bases, Positivity, 7, 95-97, (2003) · Zbl 1046.46005 [4] Abramovich, YA; Veksler, AI; Koldunov, AV, On disjointness preserving operators, Dokl. Akad. Nauk SSSR, 289, 1033-1036, (1979) · Zbl 0445.46017 [5] Yu. A. Abramovich, A. I. Veksler, and A. V. Koldunov, “Disjointness-preserving operators, their continuity, and multiplicative representation,” in: Linear Operators and Their Applications [in Russian], Leningrad Ped. Inst., Leningrad (1981), pp. 3-34. · Zbl 0244.02023 [6] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, Cambridge (1989). · Zbl 0685.39006 [7] Akilov, GP; Kolesnikov, EV; Kusraev, AG, On order continuous extension of a positive operator, Sib. Mat. Zh., 29, 24-35, (1988) · Zbl 0770.47008 [8] Akilov, GP; Kolesnikov, EV; Kusraev, AG, The Lebesgue extension of a positive operator, Dokl. Akad. Nauk SSSR, 298, 521-524, (1988) · Zbl 0696.47035 [9] G. P. Akilov and S. S. Kutateladze, Ordered Vector Spaces [in Russian], Nauka, Novosibirsk (1978). · Zbl 0395.46010 [10] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, New York (1985). · Zbl 0608.47039 [11] J. L. Bell, Boolean-Valued Models and Independence Proofs in Set Theory, Clarendon Press, New York (1985). · Zbl 0585.03021 [12] Bernau, SJ; Huijsmans, CB; Pagter, B, Sums of lattice homomorphisms, Proc. Am. Math. Soc., 115, 151-156, (1992) · Zbl 0780.46004 [13] Boulabiar, K, Recent trends on order-bounded disjointness preserving operators, Irish Math. Soc. Bull., 62, 43-69, (2008) · Zbl 1188.47032 [14] Boulabiar, K; Buskes, G; Sirotkin, G, Algebraic order-bounded disjointness preserving operators and strongly diagonal operators, Integr. Equ. Oper. Theory, 54, 9-31, (2006) · Zbl 1111.47033 [15] Bourgain, J, Real isomorphic complex Banach spaces need not be complex isomorphic, Proc. Am. Math. Soc., 96, 221-226, (1986) · Zbl 0597.46017 [16] P. J. Cohen, Set Theory and the Continuum Hypothesis, W. A. Benjamin, New York (1966). · Zbl 0182.01301 [17] Cooper, JLB, Coordinated linear spaces, Proc. London Math. Soc., 3, 305-327, (1953) · Zbl 0050.33302 [18] Dieudonné, J, Complex structures on real Banach spaces, Proc. Am. Math. Soc., 3, 162-164, (1952) · Zbl 0046.33301 [19] Dodds, G; Huijsmans, CB; Pagter, B, Characterizations of conditional expectation-type operators, Pacific J. Math., 141, 55-77, (1990) · Zbl 0687.47022 [20] Douglas, R, Contractive projections on \(L\)1 space, Pacific J. Math., 15, 443-462, (1965) · Zbl 0148.12203 [21] Duhoux, M; Meyer, M, A new proof of the lattice structure of orthomorphisms, J. London Math. Soc., 25, 375-378, (1982) · Zbl 0485.46002 [22] Gordon, EI, Real numbers in Boolean-valued models of set theory and \(K\)-spaces, Dokl. Akad. Nauk SSSR, 237, 773-775, (1977) [23] Gordon, EI, \(K\)-spaces in Boolean-valued models of set theory, Dokl. Akad. Nauk SSSR, 258, 777-780, (1981) [24] Gordon, EI, To the theorems of identity preservation in \(K\)-spaces, Sib. Mat. Zh., 23, 55-65, (1982) [25] Gowers, WT; Maurey, B, The unconditional basic sequence problem, J. Am. Math. Soc., 6, 851-874, (1993) · Zbl 0827.46008 [26] Gowers, WT; Maurey, B, Banach spaces with small spaces of operators, Math. Ann., 307, 543-568, (1997) · Zbl 0876.46006 [27] Grothendieck, A, Une caractérisation vectorielle-métrique des espae \(L\)1, Can. J. Math., 4, 552-561, (1955) · Zbl 0065.34503 [28] Gutman, AE, Locally one-dimensional \(K\)-spaces and \(σ\)-distributive Boolean algebras, Sib. Adv. Math., 5, 99-121, (1995) [29] Gutman, AE; Kutateladze, SS (ed.), Disjointness preserving operators, 361-454, (1996), Dordrecht · Zbl 1032.47503 [30] A. E. Gutman, A. G. Kusraev, and S. S. Kutateladze, The Wickstead Problem, Preprint, IAMI VSC RAS, No. 3, Vladikavkaz (2007). · Zbl 1299.46004 [31] Huijsmans, CB; Wickstead, AW, The inverse of band preserving and disjointness preserving operators, Indag. Math., 3, 179-183, (1992) · Zbl 0787.47031 [32] T. J. Jech, Set Theory, Springer, Berlin (1997). · Zbl 0882.03045 [33] L. V. Kantorovich and G. P. Akilov, Functional Analysis [in Russian], Nauka, Moscow (1984). · Zbl 0555.46001 [34] L. V. Kantorovich, B. Z. Vulikh, and A. G. Pinsker, Functional Analysis in Semiordered Spaces [in Russian], Gostekhizdat, Moscow (1950). · Zbl 0037.07201 [35] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Birkhäuser, Basel (2009). · Zbl 1221.39041 [36] Kusraev, AG, General desintegration formulas, Dokl. Akad. Nauk SSSR, 265, 1312-1316, (1982) [37] Kusraev, AG, Order continuous functionals in Boolean-valued models of set theory, Sib. Math. J., 25, 57-65, (1984) · Zbl 0573.03023 [38] A. G. Kusraev, “Numeric systems in Boolean-valued models of set theory,” in: Proc. VIII All-Union Conf. Math. Logic, Moscow (1986), p. 99. · Zbl 0827.46008 [39] A. G. Kusraev, Dominated Operators, Kluwer, Dordrecht (2000). · Zbl 0983.47025 [40] A. G. Kusraev, Dominated Operators [in Russian], Nauka, Moscow (2003). · Zbl 1045.47001 [41] Kusraev, AG, On band preserving operators, Vladikavkaz Math. J., 6, 47-58, (2004) · Zbl 1094.47513 [42] Kusraev, AG, Automorphisms and derivations in extended complex \(f\)-algebras, Sib. Math. J., 47, 97-107, (2006) · Zbl 1113.46043 [43] A. G. Kusraev, “Analysis, algebra, and logics in operator theory,” in: Korobeĭnik Yu. F. and Kusraev A. G., eds., Complex Analysis, Operator Theory, and Mathematical Modeling [in Russian], VSC RAS, Vladikavkaz (2006), pp. 171-204. [44] A. G. Kusraev and S. S. Kutateladze, Subdifferentials: Theory and Applications, Kluwer Academic, Dordrecht (1995). · Zbl 0832.49012 [45] A. G. Kusraev and S. S. Kutateladze, Nonstandard Methods of Analysis, Kluwer Academic, Dordrecht (1994). · Zbl 0817.03029 [46] A. G. Kusraev and S. S. Kutateladze, Boolean-Valued Analysis, Kluwer Academic, Dordrecht (1999). · Zbl 0955.46046 [47] A. G. Kusraev and S. S. Kutateladze, Introduction to Boolean-Valued Analysis [in Russian], Nauka, Moscow (2005). · Zbl 1087.03032 [48] Z. A. Kusraeva, “Band preserving algebraic operators,” Vladikavkaz. Math˙ Zh., 15, No. 3, 54-57(2013). · Zbl 1302.47059 [49] Z. A. Kusraeva, “Involutions and complex structures on real vector lattices,” to appear. · Zbl 1347.46002 [50] Kutateladze, SS, Choquet boundaries in \(K\)-spaces, Usp. Mat. Nauk, 30, 107-146, (1975) · Zbl 0308.46010 [51] Kutateladze, SS, Convex operators, Usp. Mat. Nauk, 34, 167-196, (1979) · Zbl 0449.47074 [52] S. S. Kutateladze, “On differences of lattice homomorphisms,” Sib. Mat. Zh., 46, No. 2, 393-396 (2005). · Zbl 1106.47033 [53] Kutateladze, SS, On Grothendieck subspaces, Sib. Mat. Zh., 46, 620-624, (2005) · Zbl 1224.46036 [54] H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer, Berlin (1974). · Zbl 0285.46024 [55] Lindenstrauss, J; Wulbert, DE, On the classification of the Banach spaces whose duals are \(L\)1-spaces, J. Funct. Anal., 4, 332-349, (1969) · Zbl 0184.15102 [56] W. A. J. Luxemburg and B. de Pagter, “Maharam extension of positive operators and \(f\)-algebras,” Positivity, 6, No. 2, 147-190 (2002). · Zbl 1061.47037 [57] Luxemburg, WAJ; Schep, A, A Radon-nikodým type theorem for positive operators and a dual, Indag. Math., 40, 357-375, (1978) · Zbl 0389.47018 [58] W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces, Vol. 1, North-Holland, Amsterdam (1971). · Zbl 0231.46014 [59] Maharam, D, The representation of abstract integrals, Trans. Am. Math. Soc., 75, 154-184, (1953) · Zbl 0051.29203 [60] Maharam, D, On kernel representation of linear operators, Trans. Am. Math. Soc., 79, 229-255, (1955) · Zbl 0066.29701 [61] D. Maharam, “On positive operators,” in: Conf. Modern Analysis and Probability, Contemp. Math., Vol. 26, Amer. Math. Soc., Providence (1984), pp. 263-277. · Zbl 0583.47042 [62] McPolin, TN; Wickstead, AW, The order boundedness of band preserving operators on uniformly complete vector lattices, Math. Proc. Cambridge Philos. Soc., 97, 481-487, (1985) · Zbl 0564.47017 [63] Meyer, M, Le stabilisateur d’un espace vectoriel réticulé, C. R. Acad. Sci. Ser. A, 283, 249-250, (1976) · Zbl 0334.46010 [64] P. Meyer-Nieberg, Banach Lattices, Springer, Berlin (1991). · Zbl 0743.46015 [65] H. H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin (1974). · Zbl 0296.47023 [66] H.-V. Schwarz, Banach Lattices and Operators, Teubner, Leipzig (1984). · Zbl 0585.47025 [67] Zb. Semadeni, Banach Spaces of Continuous Functions, Polish Sci. Publ., Warszawa (1971). [68] R. Sikorski, Boolean Algebras, Springer, Berlin (1964). · Zbl 0123.01303 [69] Solovay, R; Tennenbaum, S, Iterated Cohen extensions and souslin’s problem, Ann. Math., 94, 201-245, (1972) · Zbl 0244.02023 [70] Szarek, S, On the existence and uniqueness of complex structure and spaces with “few” operators, Trans. Am. Math. Soc., 293, 339-353, (1986) · Zbl 0592.46016 [71] Szarek, S, A superreflexive Banach space which does not admit complex structure, Proc. Am. Math. Soc., 97, 437-444, (1986) · Zbl 0604.46019 [72] G. Takeuti, Two Applications of Logic to Mathematics, Iwanami, Tokyo; Princeton Univ. Press, Princeton (1978). [73] Takeuti, G, A transfer principle in harmonic analysis, J. Symb. Logic, 44, 417-440, (1979) · Zbl 0427.03047 [74] G. Takeuti, “Boolean-valued analysis,” in: Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977), Lect. Notes Math., Vol. 753, Springer, Berlin (1979), pp. 714-731. [75] G. Takeuti and W. M. Zaring, Axiomatic Set Theory, Springer, New York (1973). · Zbl 0261.02038 [76] D. A. Vladimirov, Boolean Algebras [in Russian], Nauka, Moscow (1969). [77] B. Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces [in Russian], Fizmatgiz, Moscow (1961). · Zbl 0101.08501 [78] B. Z. Vulikh and G. Ya. Lozanovskii, “On the representation of completely linear and regular functionals in partially ordered spaces,” Mat. Sb., 84 (126), No. 3, 331-352 (1971). [79] Wickstead, AW, Representation and duality of multiplication operators on Archimedean Riesz spaces, Compositio Math., 35, 225-238, (1977) · Zbl 0381.47021 [80] A. C. Zaanen, Riesz Spaces, Vol. 2, North-Holland, Amsterdam (1983). · Zbl 0519.46001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.