Chen, Z.; Nikolayevsky, Y.; Nikonorov, Yu Compact geodesic orbit spaces with a simple isotropy group. (English) Zbl 07615656 Ann. Global Anal. Geom. 63, No. 1, Paper No. 7, 34 p. (2023). MSC: 53C30 53C25 22E46 17B10 PDF BibTeX XML Cite \textit{Z. Chen} et al., Ann. Global Anal. Geom. 63, No. 1, Paper No. 7, 34 p. (2023; Zbl 07615656) Full Text: DOI arXiv OpenURL
Chen, Huibin; Zhang, Shaoxiang; Zhu, Fuhai On Randers geodesic orbit spaces. (English) Zbl 07622616 Differ. Geom. Appl. 85, Article ID 101939, 17 p. (2022). MSC: 53C25 53C30 53C60 PDF BibTeX XML Cite \textit{H. Chen} et al., Differ. Geom. Appl. 85, Article ID 101939, 17 p. (2022; Zbl 07622616) Full Text: DOI OpenURL
Arvanitoyeorgos, Andreas; Souris, Nikolaos Panagiotis; Statha, Marina A review of compact geodesic orbit manifolds and the g.o. condition for \(\operatorname{SU}(5)/\operatorname{S(U}(2) \times \operatorname{U}(2))\). (English) Zbl 1501.53049 Balkan J. Geom. Appl. 27, No. 1, 1-10 (2022). Reviewer: Zdeněk Dušek (České Budějovice) MSC: 53C22 53C30 PDF BibTeX XML Cite \textit{A. Arvanitoyeorgos} et al., Balkan J. Geom. Appl. 27, No. 1, 1--10 (2022; Zbl 1501.53049) Full Text: Link OpenURL
Souris, Nikolaos Panagiotis Geodesic orbit spaces of compact Lie groups of rank two. (English) Zbl 1489.53056 Geom. Dedicata 216, No. 1, Paper No. 1, 17 p. (2022). Reviewer: Zdeněk Dušek (České Budějovice) MSC: 53C22 53C30 PDF BibTeX XML Cite \textit{N. P. Souris}, Geom. Dedicata 216, No. 1, Paper No. 1, 17 p. (2022; Zbl 1489.53056) Full Text: DOI arXiv OpenURL
Arvanitoyeorgos, Andreas; Souris, Nikolaos Panagiotis; Statha, Marina Geodesic orbit metrics in a class of homogeneous bundles over real and complex Stiefel manifolds. (English) Zbl 1485.53048 Geom. Dedicata 215, 31-50 (2021). Reviewer: Zdeněk Dušek (České Budějovice) MSC: 53C22 53C30 PDF BibTeX XML Cite \textit{A. Arvanitoyeorgos} et al., Geom. Dedicata 215, 31--50 (2021; Zbl 1485.53048) Full Text: DOI arXiv OpenURL
Xu, Ming Geodesic orbit Finsler spaces with \(K \geq 0\) and the (FP) condition. (English) Zbl 07417819 Adv. Geom. 21, No. 4, 551-564 (2021). Reviewer: Igor G. Nikolaev (Urbana) MSC: 53C60 22E46 53C22 PDF BibTeX XML Cite \textit{M. Xu}, Adv. Geom. 21, No. 4, 551--564 (2021; Zbl 07417819) Full Text: DOI arXiv OpenURL
Souris, Nikolaos Panagiotis On a class of geodesic orbit spaces with abelian isotropy subgroup. (English) Zbl 1478.53095 Manuscr. Math. 166, No. 1-2, 101-129 (2021). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 53C25 53C30 PDF BibTeX XML Cite \textit{N. P. Souris}, Manuscr. Math. 166, No. 1--2, 101--129 (2021; Zbl 1478.53095) Full Text: DOI arXiv OpenURL
Zhang, Shaoxiang; Yan, Zaili Geodesic orbit Randers metrics on spheres. (English) Zbl 1477.53072 Adv. Geom. 21, No. 2, 273-280 (2021). MSC: 53C22 53C30 53C60 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{Z. Yan}, Adv. Geom. 21, No. 2, 273--280 (2021; Zbl 1477.53072) Full Text: DOI OpenURL
Arvanitoyeorgos, Andreas; Souris, Nikolaos Panagiotis; Statha, Marina Geodesic orbit metrics in a class of homogeneous bundles over quaternionic Stiefel manifolds. (English) Zbl 1475.53043 J. Geom. Phys. 165, Article ID 104223, 10 p. (2021). Reviewer: Zdeněk Dušek (České Budějovice) MSC: 53C22 53C30 PDF BibTeX XML Cite \textit{A. Arvanitoyeorgos} et al., J. Geom. Phys. 165, Article ID 104223, 10 p. (2021; Zbl 1475.53043) Full Text: DOI arXiv OpenURL
Gordon, Carolyn S.; Nikonorov, Yuriĭ G. Geodesic orbit Riemannian structures on \(\mathbf{R}^n\). (English) Zbl 1407.53032 J. Geom. Phys. 134, 235-243 (2018). Reviewer: Nabil L. Youssef (Giza) MSC: 53C20 53C25 53C30 53C35 PDF BibTeX XML Cite \textit{C. S. Gordon} and \textit{Y. G. Nikonorov}, J. Geom. Phys. 134, 235--243 (2018; Zbl 1407.53032) Full Text: DOI arXiv OpenURL
Souris, Nikolaos Panagiotis Geodesic orbit metrics in compact homogeneous manifolds with equivalent isotropy submodules. (English) Zbl 1404.53054 Transform. Groups 23, No. 4, 1149-1165 (2018). Reviewer: Xavier Ramos Olivé (Riverside) MSC: 53C22 53C30 53C20 PDF BibTeX XML Cite \textit{N. P. Souris}, Transform. Groups 23, No. 4, 1149--1165 (2018; Zbl 1404.53054) Full Text: DOI arXiv OpenURL
Xu, Ming Geodesic orbit spheres and constant curvature in Finsler geometry. (English) Zbl 1404.53094 Differ. Geom. Appl. 61, 197-206 (2018). Reviewer: Nicoleta Aldea (Brasov) MSC: 53C60 22E46 53C22 PDF BibTeX XML Cite \textit{M. Xu}, Differ. Geom. Appl. 61, 197--206 (2018; Zbl 1404.53094) Full Text: DOI arXiv OpenURL
Chen, Huibin; Chen, Zhiqi; Wolf, Joseph A. Geodesic orbit metrics on compact simple Lie groups arising from flag manifolds. (Métriques définies par les variétés de drapeaux sur les groupes de Lie compacts, simples, dont les géodésiques sont des orbites.) (English. French summary) Zbl 1397.53065 C. R., Math., Acad. Sci. Paris 356, No. 8, 846-851 (2018). Reviewer: Azniv Kasparian (Sofia) MSC: 53C30 14M17 53C25 PDF BibTeX XML Cite \textit{H. Chen} et al., C. R., Math., Acad. Sci. Paris 356, No. 8, 846--851 (2018; Zbl 1397.53065) Full Text: DOI arXiv OpenURL
Dušek, Zdeněk Homogeneous geodesics and g.o. manifolds. (English) Zbl 1401.53041 Note Mat. 38, No. 1, 1-16 (2018). Reviewer: Eugenia Rosado Maria (Madrid) MSC: 53C30 53C22 53C60 PDF BibTeX XML Cite \textit{Z. Dušek}, Note Mat. 38, No. 1, 1--16 (2018; Zbl 1401.53041) Full Text: DOI OpenURL
Nikonorov, Yuriĭ Gennadievich On the structure of geodesic orbit Riemannian spaces. (English) Zbl 1381.53088 Ann. Global Anal. Geom. 52, No. 3, 289-311 (2017). Reviewer: V. V. Gorbatsevich (Moskva) MSC: 53C30 53C20 53C25 53C35 PDF BibTeX XML Cite \textit{Y. G. Nikonorov}, Ann. Global Anal. Geom. 52, No. 3, 289--311 (2017; Zbl 1381.53088) Full Text: DOI arXiv OpenURL
Berestovskiĭ, Valeriĭ Nikolaevich; Nikonorov, Yuriĭ Gennadievich Generalized normal homogeneous Riemannian metrics on spheres and projective spaces. (English) Zbl 1410.53054 Ann. Global Anal. Geom. 45, No. 3, 167-196 (2014). MSC: 53C35 53C20 53C25 PDF BibTeX XML Cite \textit{V. N. Berestovskiĭ} and \textit{Y. G. Nikonorov}, Ann. Global Anal. Geom. 45, No. 3, 167--196 (2014; Zbl 1410.53054) Full Text: DOI arXiv OpenURL
Berestovskiĭ, V. N. Generalized normal homogeneous spheres \(S^{4n+3}\) with greatest connected motion group \(\mathrm{Sp}{(n+1)\cdot \mathrm{U}(1)}\). (English. Russian original) Zbl 1285.53040 Sib. Math. J. 54, No. 5, 776-789 (2013); translation from Sib. Mat. Zh. 54, No. 5, 972-988 (2013). Reviewer: Hiroshi Tamaru (Hiroshima) MSC: 53C30 PDF BibTeX XML Cite \textit{V. N. Berestovskiĭ}, Sib. Math. J. 54, No. 5, 776--789 (2013; Zbl 1285.53040); translation from Sib. Mat. Zh. 54, No. 5, 972--988 (2013) Full Text: DOI OpenURL
Berestovskiĭ, V. N. Generalized normal homogeneous spheres. (English. Russian original) Zbl 1285.53039 Sib. Math. J. 54, No. 4, 588-603 (2013); translation from Sib. Mat. Zh. 54, No. 4, 742-761 (2013). Reviewer: Claudio Gorodski (Sao Paulo) MSC: 53C30 PDF BibTeX XML Cite \textit{V. N. Berestovskiĭ}, Sib. Math. J. 54, No. 4, 588--603 (2013; Zbl 1285.53039); translation from Sib. Mat. Zh. 54, No. 4, 742--761 (2013) Full Text: DOI OpenURL