×

Model A of critical dynamics: 5-loop \(\varepsilon\) expansion study. (English) Zbl 07543446

Summary: We have calculated the five-loop RG expansions of the \(n\)-component A model of critical dynamics in dimensions \(d = 4 - \varepsilon\) within the Minimal Subtraction scheme. This is made possible by using the advanced diagram reduction method and the Sector Decomposition technique adapted to the problems of critical dynamics. The \(\varepsilon\) expansions for the critical dynamic exponent \(z\) for an arbitrary value of the order parameter dimension \(n\) are derived. Based on these series, the numerical estimates of \(z\) for different universality classes are extracted and compared with the results obtained within different theoretical and experimental methods.

MSC:

82-XX Statistical mechanics, structure of matter

Software:

GraphState
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Green, M.; Sengers, J., Critical Phenomena: Proceedings of a Conference Held in Washington, D. C., April 1965 (2017), Forgotten Books
[2] Green, M., Critical Phenomena: International School of Physics “Enrico Fermi” (51st : 1970 : Varenna, Italy) (1971), Academic Press New York
[3] Wilson, K.; Kogut, J., The renormalization group and the \(ɛ\) expansion, Phys. Rep., 12, 75 (1974)
[4] Fisher, M. E., The renormalization group in the theory of critical behavior, Rev. Modern Phys., 46, 597 (1974)
[5] Zinn-Justin, J., Quantum Field Theory and Critical Phenomena (1989), Clarendon Press
[6] Pelissetto, A.; Vicari, E., Critical phenomena and renormalization-group theory, Phys. Rep., 368, 549 (2002) · Zbl 0997.82019
[7] Vasil’ev, A. N., Quantum Field Renormalization Group in Critical Behavior Theory and Stochastic Dynamics (2004), Chapman & Hall/CRC, originally published in Russian in 1998 by St. Petersburg Institute of Nuclear Physics Press; translated by Patricia A. de Forcrand-Millard · Zbl 1140.82019
[8] Hohenberg, P. C.; Halperin, B. I., Theory of dynamic critical phenomena, Rev. Modern Phys., 49, 435 (1977)
[9] Ódor, G., Universality classes in nonequilibrium lattice systems, Rev. Modern Phys., 76, 663 (2004) · Zbl 1205.82102
[10] Wansleben, S.; Landau, D. P., Dynamical critical exponent of the 3D Ising model, J. Appl. Phys., 61, 8, 3968 (1987)
[11] Wansleben, S.; Landau, D. P., Monte Carlo investigation of critical dynamics in the three-dimensional Ising model, Phys. Rev. B, 43, 6006 (1991)
[12] Münkel, C.; Heermann, D. W.; Adler, J.; Gofman, M.; Stauffer, D., The dynamical critical exponent of the two-, three- and five-dimensional kinetic Ising model, Physica A, 193, 540 (1993) · Zbl 1395.82053
[13] Ito, N., Non-equilibrium critical relaxation of the three-dimensional Ising model, Physica A, 192, 604 (1993)
[14] Ito, N., Non-equilibrium relaxation and interface energy of the Ising model, Physica A, 196, 591 (1993)
[15] Matz, R.; Hunter, D. L.; Naeem Jan, N., The dynamic critical exponent of the three-dimensional Ising model, J. Stat. Phys., 74, 903 (1994)
[16] Grassberger, P., Damage spreading and critical exponents for “model A” Ising dynamics, Physica A, 214, 547 (1995)
[17] Li, Z. B.; Schülke, L.; Zheng, B., Dynamic Monte Carlo measurement of critical exponents, Phys. Rev. Lett., 74, 3396 (1995)
[18] Gropengiesser, U., Damage spreading and critical exponents for ‘model A’Ising dynamics, Physica A, 215, 308 (1995)
[19] Nightingale, M. P.; Blöte, H. W.J., Dynamic exponent of the two-dimensional Ising Model and Monte Carlo computation of the subdominant eigenvalue of the stochastic matrix, Phys. Rev. Lett., 76, 4548 (1996)
[20] Stauffer, D., Flipping of magnetization in Ising models at Tc, Internat. J. Modern Phys. C, 7, 753 (1996)
[21] Silvério Soares, M.; Kamphorst Leal da Silva, J.; SáBarreto, F. C., Numerical method to evaluate the dynamical critical exponent, Phys. Rev. B, 55, 1021 (1997)
[22] Wang, F. G.; Hu, C. K., Universality in dynamic critical phenomena, Phys. Rev. E, 56, 2310 (1997)
[23] Wang, J. S.; Gan, C. K., Nonequilibrium relaxation of the two-dimensional Ising model: Series-expansion and Monte Carlo studies, Phys. Rev. E, 57, 6548 (1998)
[24] Jaster, A.; Mainville, J.; Schülke, L.; Zheng, B., Short-time critical dynamics of the three-dimensional Ising model, J. Phys. A Math. Theor., 32, 1395 (1999) · Zbl 0933.82027
[25] Godreche, C.; Luck, J. M., Response of non-equilibrium systems at criticality: ferromagnetic models in dimension two and above, J. Phys. A Math. Theor., 33, 9141 (2000) · Zbl 0960.82020
[26] Ito, N.; Hukushima, K.; Ogawa, K.; Ozeki, Y., Nonequilibrium relaxation of fluctuations of physical quantities, J. Phys. Soc. Japan, 69, 7, 1931 (2000)
[27] Nightingale, M. P.; Blöte, H. W.J., Monte Carlo computation of correlation times of independent relaxation modes at criticality, Phys. Rev. B, 62, 1089 (2000)
[28] Lei, X. W.; Zheng, J.; Zhao, X. Y., Monte Carlo simulations for two-dimensional ising system far from equilibrium, Sci. Bull., 52, 307 (2007) · Zbl 1285.82015
[29] Murase, Y.; Ito, N., Dynamic critical exponents of three-dimensional Ising models and two-dimensional three-states potts models, J. Phys. Soc. Japan, 77, Article 014002 pp. (2008)
[30] Collura, M., Off-equilibrium relaxational dynamics with an improved ising Hamiltonian, J. Stat. Mech. Theory Exp., 2010, P12036 (2010)
[31] Hasenbusch, M., Dynamic critical exponent \(z\) of the three-dimensional ising universality class: Monte Carlo simulations of the improved Blume-Capel model, Phys. Rev. E, 101, Article 022126 pp. (2020)
[32] Peczak, P.; Landau, D. P., Monte Carlo study of critical relaxation in the 3D heisenberg model, J. Appl. Phys., 67, 9, 5427 (1990)
[33] Peczak, P.; Landau, D. P., Dynamical critical behavior of the three-dimensional Heisenberg model, Phys. Rev. B, 47, 14260 (1993)
[34] Fernandes, H. A.; da Silva, R.; Drugowich de Felício, J. R., Short-time critical and coarsening dynamics of the classical three-dimensional Heisenberg model, J. Stat. Mech. Theory Exp., 2006, P10002 (2006)
[35] Pospelov, E. A.; Prudnikov, V. V.; Prudnikov, P. V.; Lyakh, A. S., Non-equilibrium critical behavior of the 3D classical Heisenberg model, J. Phys. Conf. Ser., 1163, Article 012020 pp. (2019)
[36] Ying, H. P.; Zheng, B.; Yu, Y.; Trimper, S., Corrections to scaling for the two-dimensional dynamic \(\operatorname{XY}\) model, Phys. Rev. E, 63, Article 035101 pp. (2001)
[37] Astillero, A.; Ruiz-Lorenzo, J. J., Computation of the dynamic critical exponent of the three-dimensional Heisenberg model, Phys. Rev. E, 100, Article 062117 pp. (2019)
[38] Zheng, B.; Ren, F.; Ren, H., Corrections to scaling in two-dimensional dynamic \(\operatorname{XY}\) and fully frustrated \(\operatorname{XY}\) models, Phys. Rev. E, 68, Article 046120 pp. (2003)
[39] Folk, R.; Moser, G., Critical dynamics: a field-theoretical approach, J. Phys. A Math. Theor., 39, R207 (2006) · Zbl 1122.82014
[40] Prudnikov, V. V.; Ivanov, A. V.; Fedorenko, A. A., Critical dynamics of spin systems in the four-loop approximation, J. Exp. Theor. Phys., 66, 835 (1997)
[41] Krinitsyn, A. S.; Prudnikov, V. V.; Prudnikov, P. V., Calculations of the dynamical critical exponent using the asymptotic series summation method, Theoret. Math. Phys., 147, 561 (2006) · Zbl 1177.82085
[42] Rácz, Z.; Collins, M. F., Linear and nonlinear critical slowing down in the kinetic Ising model: High-temperature series, Phys. Rev. B, 13, 3074 (1976)
[43] Dammann, B.; Reger, J. D., Dynamical critical exponent of the two-dimensional Ising model, Europhys. Lett., 21, 157 (1993)
[44] Oerding, K., The dynamic critical exponent of dilute and pure Ising systems, J. Phys. A Math. Theor., 28, L639 (1995) · Zbl 0875.60019
[45] Canet, L.; Chaté, H., A non-perturbative approach to critical dynamics, J. Phys. A Math. Theor., 40, 1937 (2007) · Zbl 1112.82033
[46] Nalimov, M. Y.; Sergeev, V. A.; Sladkoff, L., Borel resummation of the \(ɛ\)-expansion of the dynamical exponent z in model a of the \(\phi 4 (O\) (n)) theory, Theoret. Math. Phys., 159, 499 (2009) · Zbl 1175.81148
[47] Mesterházy, D.; Stockemer, J. H.; Tanizaki, Y., From quantum to classical dynamics: The relativistic \(O ( N )\) model in the framework of the real-time functional renormalization group, Phys. Rev. D, 92, Article 076001 pp. (2015)
[48] Duclut, C.; Delamotte, B., Frequency regulators for the nonperturbative renormalization group: A general study and the model A as a benchmark, Phys. Rev. E, 95, Article 012107 pp. (2017)
[49] Adzhemyan, L. T.; Ivanova, E. V.; Kompaniets, M. V.; Vorobyeva, S. Y., Diagram reduction in problem of critical dynamics of ferromagnets: 4-loop approximation, J. Phys. A Math. Theor., 51, Article 155003 pp. (2018) · Zbl 1390.82067
[50] Niermann, D.; Grams, C. P.; Becker, P.; Bohatỳ, L.; Schenck, H.; Hemberger, J., Critical slowing down near the multiferroic phase transition in MnWO 4, Phys. Rev. Lett., 114, Article 037204 pp. (2015)
[51] Dunlap, R. A.; Gottlieb, A. M., Critical spin fluctuations in EuO, Phys. Rev. B, 22, 3422 (1980)
[52] Bohn, H. G.; Kollmar, A.; Zinn, W., Spin dynamics in the cubic heisenberg ferromagnet EuS, Phys. Rev. B, 30, 6504 (1984)
[53] Halperin, B. I.; Hohenberg, P. C.; Ma, S.-k., Calculation of dynamic critical properties using Wilson’s expansion methods, Phys. Rev. Lett., 29, 1548 (1972)
[54] Antonov, N. V.; Vasil’ev, A. N., Critical dynamics as a field theory, Theoret. Math. Phys., 60, 671 (1984)
[55] Adzhemyan, L. T.; Novikov, S. V.; Sladkoff, L., Calculation of dynamical exponent in model A of critical dynamics to order \(ɛ4\), Vestnik SPbU, 4 (2008)
[56] Adzhemyan, L.; Evdokimov, D.; Hnatič, M.; Ivanova, E.; Kompaniets, M.; Kudlis, A.; Zakharov, D., The dynamic critical exponent \(z\) for 2d and 3d ising models from five-loop \(ɛ\) expansion, Phys. Lett. A, 425, Article 127870 pp. (2022)
[57] Honkonen, J.; Komarova, M. V.; Molotkov, Y. G.; Nalimov, M., Effective large-scale model of boson gas from microscopic theory, Nuclear Phys. B, 939, 105 (2019) · Zbl 1409.82017
[58] Zhavoronkov, Y. A.; Komarova, M. V.; Molotkov, Y. G.; Nalimov, M. Y.; Honkonent, J., Critical dynamics of the phase transition to the superfluid state, Theoret. Math. Phys., 200, 1237 (2019) · Zbl 1428.82071
[59] Marinelli, M.; Mercuri, F.; Belanger, D. P., Specific heat, thermal diffusivity, and thermal conductivity of FeF 2 at the Néel temperature, Phys. Rev. B, 51, 8897 (1995)
[60] Livet, F.; Fèvre, M.; Beutier, G.; Sutton, M., Ordering fluctuation dynamics in AuAgZn 2, Phys. Rev. B, 92, Article 094102 pp. (2015)
[61] Livet, F.; Fèvre, M.; Beutier, G.; Zontone, F.; Chushkin, Y.; Sutton, M., Measuring the dynamical critical exponent of an ordering alloy using x-ray photon correlation spectroscopy, Phys. Rev. B, 98, Article 014202 pp. (2018)
[62] Livet, F.; Bley, F.; Simon, J. P.; Caudron, R.; Mainville, J.; Sutton, M.; Lebolloc’h, D., Statics and kinetics of the ordering transition in the \(\operatorname{AuAgZn}_2\) alloy, Phys. Rev. B, 66, Article 134108 pp. (2002)
[63] Hohenemser, C.; Chow, L.; Suter, R. M., Dynamical critical behavior of isotropic ferromagnets, Phys. Rev. B, 26, 5056 (1982)
[64] Rosov, N.; Hohenemser, C.; Eibschütz, M., Dynamic critical behavior of the random-exchange Ising system \(\operatorname{Fe}_{0 . 9} \operatorname{Zn}_{0 . 1} \operatorname{F}_2\) determined via Mössbauer spectroscopy, Phys. Rev. B, 46, 3452 (1992)
[65] Binoth, T.; Heinrich, G., Numerical evaluation of multi-loop integrals by sector decomposition, Nuclear Phys. B, 680, 375 (2004) · Zbl 1043.81630
[66] Halperin, B. I.; Hohenberg, P. C.; Ma, S., Calculation of dynamic critical properties using Wilson’s expansion methods, Phys. Rev. Lett., 29, 1548 (1972)
[67] Kompaniets, M. V.; Panzer, E., Minimally subtracted six-loop renormalization of \(\text{O} ( n )\)-symmetric \(\phi^4\) theory and critical exponents, Phys. Rev. D, 96, Article 036016 pp. (2017)
[68] Schnetz, O., Numbers and functions in quantum field theory, Phys. Rev. D, 97, Article 085018 pp. (2018)
[69] Le Guillou, J. C.; Zinn-Justin, J., Accurate critical exponents from the \(ɛ\)-expansion, J. Phys. Lett.-Paris, 46, 137 (1985)
[70] Kazakov, D. I.; Vladimirov, A. A.; Tarasov, O. V., Calculation of critical exponents by quantum field theory methods, Zh. Eksp. Teor. Fiz., 77, 521 (1979)
[71] Kompaniets, M. V., Prediction of the higher-order terms based on borel resummation with conformal mapping, (Proceedings, 17th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2016): Valparaiso, Chile, January 18-22, 2016. Proceedings, 17th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2016): Valparaiso, Chile, January 18-22, 2016, Journal of Physics: Conference Series, vol. 762 (2016)), Article 012075 pp.
[72] Batkovich, D. V.; Chetyrkin, K. G.; Kompaniets, M. V., Six loop analytical calculation of the field anomalous dimension and the critical exponent \(\eta\) in O (n)-symmetric \(\varphi 4\) model, Nuclear Phys. B, 906, 147 (2016) · Zbl 1334.81061
[73] Kazakov, D. I.; Tarasov, O. V.; Shirkov, D. V., Analytic continuation of the results of perturbation theory for the model g \(\varphi \) ̂4 to the region g \(\smallsetminus\) gtrsim1, Theoret. Math. Phys., 38, 15 (1979)
[74] Adzhemyan, L. T.; Evdokimov, D. A.; Hnatič, M.; Ivanova, E. V.; Kompaniets, M. V.; Kudlis, A.; Zakharov, D. V., The dynamic critical exponent z for 2d and 3d Ising models from five-loop \(ɛ\) expansion, Phys. Lett. A, 425, Article 127870 pp. (2022)
[75] Honkonen, J.; Komarova, M. V.; Nalimov, M. Y., Large-order asymptotes for dynamic models near equilibrium, Nuclear Phys. B, 707, 493 (2005) · Zbl 1160.81425
[76] Guida, R.; Zinn-Justin, J., Critical exponents of the N-vector model, J. Phys. A Math. Theor., 31, 8103 (1998) · Zbl 0978.82037
[77] Borinsky, M.; Gracey, J. A.; Kompaniets, M. V.; Schnetz, O., Five-loop renormalization of \(\phi^3\) theory with applications to the Lee-Yang edge singularity and percolation theory, Phys. Rev. D, 103, Article 116024 pp. (2021)
[78] Batkovich, D.; Kirienko, Y.; Kompaniets, M.; Novikov, S., GraphState - a tool for graph identification and labelling (2014), arXiv:1409.8227
[79] B. Nickel, D. Meiron, G. Baker Jr., Compilation of 2-pt and 4-pt graphs for continuous spin model, University of Guelph Report, 1977.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.