De Philippis, Guido; Pigati, Alessandro Non-degenerate minimal submanifolds as energy concentration sets: a variational approach. (English) Zbl 07896927 Commun. Pure Appl. Math. 77, No. 8, 3581-3627 (2024). MSC: 81-XX 35-XX × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Chodosh, Otis; Engelstein, Max; Spolaor, Luca The Riemannian quantitative isoperimetric inequality. (English) Zbl 1525.53008 J. Eur. Math. Soc. (JEMS) 25, No. 5, 1711-1741 (2023). Reviewer: Mariana Vega Smit (Bellingham) MSC: 53A07 49Q20 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Dambrine, M.; Lamboley, J. Stability in shape optimization with second variation. (English) Zbl 1416.49046 J. Differ. Equations 267, No. 5, 3009-3045 (2019). MSC: 49Q10 49K20 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Inauen, Dominik; Marchese, Andrea Quantitative minimality of strictly stable extremal submanifolds in a flat neighbourhood. (English) Zbl 1394.49038 J. Funct. Anal. 275, No. 6, 1532-1550 (2018). MSC: 49Q05 49Q15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Neumayer, Robin A strong form of the quantitative Wulff inequality. (English) Zbl 1337.49077 SIAM J. Math. Anal. 48, No. 3, 1727-1772 (2016). MSC: 49Q20 49Q10 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Franceschi, Valentina; Leonardi, Gian Paolo; Monti, Roberto Quantitative isoperimetric inequalities in \(\mathbb H^n\). (English) Zbl 1326.49075 Calc. Var. Partial Differ. Equ. 54, No. 3, 3229-3239 (2015). MSC: 49Q20 49Q10 53C17 53A10 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Bögelein, Verena; Duzaar, Frank; Fusco, Nicola A sharp quantitative isoperimetric inequality in higher codimension. (English) Zbl 1320.49030 Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 26, No. 3, 309-362 (2015). MSC: 49Q20 49Q15 52A40 × Cite Format Result Cite Review PDF Full Text: DOI
Brasco, Lorenzo; De Philippis, Guido; Velichkov, Bozhidar Faber-Krahn inequalities in sharp quantitative form. (English) Zbl 1334.49149 Duke Math. J. 164, No. 9, 1777-1831 (2015). Reviewer: Manuel Ritoré (Granada) MSC: 49R05 49Q20 49Q10 47A75 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid
Figalli, A.; Maggi, F. On the isoperimetric problem for radial log-convex densities. (English) Zbl 1307.49046 Calc. Var. Partial Differ. Equ. 48, No. 3-4, 447-489 (2013). Reviewer: Themistocles M. Rassias (Athens) MSC: 49Q20 × Cite Format Result Cite Review PDF Full Text: DOI Link