Abdelkawy, M. A.; Jeelani, Mdi Begum; Alnahdi, Abeer S.; Taha, T. M.; Soluma, E. M. Legendre spectral collocation method for distributed and Riesz fractional convection-diffusion and Schrödinger-type equation. (English) Zbl 07556227 Bound. Value Probl. 2022, Paper No. 13, 15 p. (2022). MSC: 65M70 65D32 26A33 35R11 35Q55 PDF BibTeX XML Cite \textit{M. A. Abdelkawy} et al., Bound. Value Probl. 2022, Paper No. 13, 15 p. (2022; Zbl 07556227) Full Text: DOI OpenURL
Kumar, Santosh; Alam, Khursheed; Chauhan, Alka Fractional derivative based nonlinear diffusion model for image denoising. (English) Zbl 07550670 S\(\vec{\text{e}}\)MA J. 79, No. 2, 355-364 (2022). MSC: 65D18 26A33 65M06 68U10 PDF BibTeX XML Cite \textit{S. Kumar} et al., S\(\vec{\text{e}}\)MA J. 79, No. 2, 355--364 (2022; Zbl 07550670) Full Text: DOI OpenURL
Nezhadhosein, Saeed; Ghanbari, Reza; Ghorbani-Moghadam, Khatere A numerical solution for fractional linear quadratic optimal control problems via shifted Legendre polynomials. (English) Zbl 07549898 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 158, 28 p. (2022). MSC: 65-XX 49-XX PDF BibTeX XML Cite \textit{S. Nezhadhosein} et al., Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 158, 28 p. (2022; Zbl 07549898) Full Text: DOI OpenURL
Safdari, Hamid; Rajabzadeh, Majid; Khalighi, Moein LDG approximation of a nonlinear fractional convection-diffusion equation using B-spline basis functions. (English) Zbl 07418826 Appl. Numer. Math. 171, 45-57 (2022). MSC: 65Mxx 65Dxx 35Rxx PDF BibTeX XML Cite \textit{H. Safdari} et al., Appl. Numer. Math. 171, 45--57 (2022; Zbl 07418826) Full Text: DOI OpenURL
Yang, Xiao-Jun; Gao, Feng; Ju, Yang General fractional calculus with nonsingular kernels: new prospective on viscoelasticity. (English) Zbl 1480.74040 Singh, Jagdev (ed.) et al., Methods of mathematical modelling and computation for complex systems. Cham: Springer. Stud. Syst. Decis. Control 373, 135-157 (2022). MSC: 74D05 74A20 74-10 26A33 PDF BibTeX XML Cite \textit{X.-J. Yang} et al., Stud. Syst. Decis. Control 373, 135--157 (2022; Zbl 1480.74040) Full Text: DOI OpenURL
Johansyah, Muhamad Deni; Supriatna, Asep K.; Rusyaman, Endang; Saputra, Jumadil Application of fractional differential equation in economic growth model: a systematic review approach. (English) Zbl 07536330 AIMS Math. 6, No. 9, 10266-10280 (2021). MSC: 26A33 34A08 34A34 34B10 PDF BibTeX XML Cite \textit{M. D. Johansyah} et al., AIMS Math. 6, No. 9, 10266--10280 (2021; Zbl 07536330) Full Text: DOI OpenURL
Khaled, Khachnaoui Nehari type solutions for fractional Hamiltonian systems. (English) Zbl 1486.35434 Chaos Solitons Fractals 147, Article ID 110943, 9 p. (2021). MSC: 35R11 35A15 37J46 PDF BibTeX XML Cite \textit{K. Khaled}, Chaos Solitons Fractals 147, Article ID 110943, 9 p. (2021; Zbl 1486.35434) Full Text: DOI OpenURL
Yang, Shuai; Hu, Cheng; Yu, Juan; Jiang, Haijun Projective synchronization in finite-time for fully quaternion-valued memristive networks with fractional-order. (English) Zbl 1486.93019 Chaos Solitons Fractals 147, Article ID 110911, 14 p. (2021). MSC: 93D05 34A36 34A08 34C60 PDF BibTeX XML Cite \textit{S. Yang} et al., Chaos Solitons Fractals 147, Article ID 110911, 14 p. (2021; Zbl 1486.93019) Full Text: DOI OpenURL
Vishwamittar; Batra, Priyanka; Chopra, Ribhu Stochastic resonance in two coupled fractional oscillators with potential and coupling parameters subjected to quadratic asymmetric dichotomous noise. (English) Zbl 07534075 Physica A 561, Article ID 125148, 16 p. (2021). MSC: 82-XX PDF BibTeX XML Cite \textit{Vishwamittar} et al., Physica A 561, Article ID 125148, 16 p. (2021; Zbl 07534075) Full Text: DOI OpenURL
Tatar, Nasser-eddine Mittag-Leffler stability for a fractional Euler-Bernoulli problem. (English) Zbl 1485.35040 Chaos Solitons Fractals 149, Article ID 111077, 15 p. (2021). MSC: 35B35 35R11 35R10 35B40 35L20 PDF BibTeX XML Cite \textit{N.-e. Tatar}, Chaos Solitons Fractals 149, Article ID 111077, 15 p. (2021; Zbl 1485.35040) Full Text: DOI OpenURL
Elmahdi, Emadidin Gahalla Mohmed; Huang, Jianfei Two linearized finite difference schemes for time fractional nonlinear diffusion-wave equations with fourth order derivative. (English) Zbl 1484.65179 AIMS Math. 6, No. 6, 6356-6376 (2021). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{E. G. M. Elmahdi} and \textit{J. Huang}, AIMS Math. 6, No. 6, 6356--6376 (2021; Zbl 1484.65179) Full Text: DOI OpenURL
He, Ying; Zuo, Qian Jacobi-Davidson method for the second order fractional eigenvalue problems. (English) Zbl 07512507 Chaos Solitons Fractals 143, Article ID 110614, 14 p. (2021). MSC: 65F18 93C15 PDF BibTeX XML Cite \textit{Y. He} and \textit{Q. Zuo}, Chaos Solitons Fractals 143, Article ID 110614, 14 p. (2021; Zbl 07512507) Full Text: DOI OpenURL
Khalouta, Ali; Kadem, Abdelouahab Theories and analytical solutions for fractional differential equations. (English) Zbl 1478.34008 J. Math. Ext. 15, No. 3, Paper No. 12, 19 p. (2021). MSC: 34A08 35A22 33E12 35C10 PDF BibTeX XML Cite \textit{A. Khalouta} and \textit{A. Kadem}, J. Math. Ext. 15, No. 3, Paper No. 12, 19 p. (2021; Zbl 1478.34008) Full Text: DOI Link OpenURL
Wu, Shanhe; Samraiz, Muhammad; Perveen, Zahida; Iqbal, Sajid; Hussain, Azhar On weighted \(k\)-fractional operators with applications in mathematical physics. (English) Zbl 1486.35449 Fractals 29, No. 4, Article ID 2150084, 14 p. (2021). MSC: 35R11 26A33 PDF BibTeX XML Cite \textit{S. Wu} et al., Fractals 29, No. 4, Article ID 2150084, 14 p. (2021; Zbl 1486.35449) Full Text: DOI OpenURL
Rabbani, Fereshteh; Khraisha, Tamer; Abbasi, Fatemeh; Jafari, Gholam Reza Memory effects on link formation in temporal networks: a fractional calculus approach. (English) Zbl 07459766 Physica A 564, Article ID 125502, 7 p. (2021). MSC: 82-XX PDF BibTeX XML Cite \textit{F. Rabbani} et al., Physica A 564, Article ID 125502, 7 p. (2021; Zbl 07459766) Full Text: DOI arXiv OpenURL
Krishna, Akshay; Bhatt, R. N. Beyond the universal Dyson singularity for 1-D chains with hopping disorder. (English) Zbl 1486.82039 Ann. Phys. 435, Article ID 168537, 12 p. (2021). MSC: 82C44 PDF BibTeX XML Cite \textit{A. Krishna} and \textit{R. N. Bhatt}, Ann. Phys. 435, Article ID 168537, 12 p. (2021; Zbl 1486.82039) Full Text: DOI arXiv OpenURL
Huang, Jianfei; Qiao, Zhi; Zhang, Jingna; Arshad, Sadia; Tang, Yifa Two linearized schemes for time fractional nonlinear wave equations with fourth-order derivative. (English) Zbl 1475.65072 J. Appl. Math. Comput. 66, No. 1-2, 561-579 (2021). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{J. Huang} et al., J. Appl. Math. Comput. 66, No. 1--2, 561--579 (2021; Zbl 1475.65072) Full Text: DOI OpenURL
Luc, Nguyen Hoang; Baleanu, Dumitru; Agarwal, Ravi P.; Long, Le Dinh Identifying the source function for time fractional diffusion with non-local in time conditions. (English) Zbl 1476.35113 Comput. Appl. Math. 40, No. 5, Paper No. 159, 21 p. (2021). MSC: 35K05 35K99 47J06 47H10 PDF BibTeX XML Cite \textit{N. H. Luc} et al., Comput. Appl. Math. 40, No. 5, Paper No. 159, 21 p. (2021; Zbl 1476.35113) Full Text: DOI OpenURL
Han, Jingqi; Yan, Litan \(L_p\)-theory for the fractional time stochastic heat equation with an infinite-dimensional fractional Brownian motion. (English) Zbl 1475.60118 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 24, No. 2, Article ID 2150010, 31 p. (2021). MSC: 60H15 60H05 60G22 PDF BibTeX XML Cite \textit{J. Han} and \textit{L. Yan}, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 24, No. 2, Article ID 2150010, 31 p. (2021; Zbl 1475.60118) Full Text: DOI OpenURL
Zhang, Jingna; Aleroev, Temirkhan S.; Tang, Yifa; Huang, Jianfei Numerical schemes for time-space fractional vibration equations. (English) Zbl 07409139 Adv. Appl. Math. Mech. 13, No. 4, 806-826 (2021). MSC: 65M06 65N06 65M12 26A33 35R11 35R09 65D32 PDF BibTeX XML Cite \textit{J. Zhang} et al., Adv. Appl. Math. Mech. 13, No. 4, 806--826 (2021; Zbl 07409139) Full Text: DOI OpenURL
Tassaddiq, Asifa; Alruban, Abdulrahman On modifications of the gamma function by using Mittag-Leffler function. (English) Zbl 1477.33008 J. Math. 2021, Article ID 9991762, 12 p. (2021). MSC: 33B15 26A33 PDF BibTeX XML Cite \textit{A. Tassaddiq} and \textit{A. Alruban}, J. Math. 2021, Article ID 9991762, 12 p. (2021; Zbl 1477.33008) Full Text: DOI OpenURL
Rasouli, S. M. M.; Jalalzadeh, S.; Moniz, P. V. Broadening quantum cosmology with a fractional whirl. (English) Zbl 1467.83020 Mod. Phys. Lett. A 36, No. 14, Article ID 2140005, 14 p. (2021). MSC: 83F05 35Q41 35R11 81Q05 PDF BibTeX XML Cite \textit{S. M. M. Rasouli} et al., Mod. Phys. Lett. A 36, No. 14, Article ID 2140005, 14 p. (2021; Zbl 1467.83020) Full Text: DOI arXiv OpenURL
Shah, Nita H.; Jayswal, Ekta N.; Pandya, Purvi M. Fractional order model for yield through diagnosed/undiagnosed soil. (English) Zbl 1470.92414 São Paulo J. Math. Sci. 15, No. 1, 392-403 (2021). MSC: 92F05 91B76 49N90 26A33 PDF BibTeX XML Cite \textit{N. H. Shah} et al., São Paulo J. Math. Sci. 15, No. 1, 392--403 (2021; Zbl 1470.92414) Full Text: DOI OpenURL
Han, Beom-Seok; Kim, Kyeong-Hun; Park, Daehan A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on \(C^1\) domains. (English) Zbl 1465.35395 Discrete Contin. Dyn. Syst. 41, No. 7, 3415-3445 (2021). MSC: 35R11 35B65 26A33 PDF BibTeX XML Cite \textit{B.-S. Han} et al., Discrete Contin. Dyn. Syst. 41, No. 7, 3415--3445 (2021; Zbl 1465.35395) Full Text: DOI OpenURL
Safdari, Hamid; Rajabzadeh, Majid; Khalighi, Moein Solving a non-linear fractional convection-diffusion equation using local discontinuous Galerkin method. (English) Zbl 1475.65130 Appl. Numer. Math. 165, 22-34 (2021). MSC: 65M60 65D12 33E12 35K57 45E05 26A33 35R11 PDF BibTeX XML Cite \textit{H. Safdari} et al., Appl. Numer. Math. 165, 22--34 (2021; Zbl 1475.65130) Full Text: DOI OpenURL
Yang, Shuai; Jiang, Haijun; Hu, Cheng; Yu, Juan Exponential synchronization of fractional-order reaction-diffusion coupled neural networks with hybrid delay-dependent impulses. (English) Zbl 1464.93063 J. Franklin Inst. 358, No. 6, 3167-3192 (2021). MSC: 93D23 93C20 26A33 93B70 93C27 93C43 PDF BibTeX XML Cite \textit{S. Yang} et al., J. Franklin Inst. 358, No. 6, 3167--3192 (2021; Zbl 1464.93063) Full Text: DOI OpenURL
Devi, Anju; Jakhar, Manjeet Analysis of concentration of \(\mathrm{Ca^{2+}} \) arising in astrocytes cell. (English) Zbl 1468.35212 Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 11, 9 p. (2021). MSC: 35Q92 26A33 33E50 44A15 49K20 92C20 92C40 35R11 PDF BibTeX XML Cite \textit{A. Devi} and \textit{M. Jakhar}, Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 11, 9 p. (2021; Zbl 1468.35212) Full Text: DOI OpenURL
Lin, Guoxing Describing NMR relaxation by effective phase diffusion equation. (English) Zbl 1469.78002 Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105825, 15 p. (2021). MSC: 78A25 33E12 60G60 44A10 42A38 34A08 PDF BibTeX XML Cite \textit{G. Lin}, Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105825, 15 p. (2021; Zbl 1469.78002) Full Text: DOI arXiv OpenURL
Keith, Brendan; Khristenko, Ustim; Wohlmuth, Barbara A fractional PDE model for turbulent velocity fields near solid walls. (English) Zbl 1485.76055 J. Fluid Mech. 916, Paper No. A21, 30 p. (2021). MSC: 76F40 76F55 76M22 26A33 PDF BibTeX XML Cite \textit{B. Keith} et al., J. Fluid Mech. 916, Paper No. A21, 30 p. (2021; Zbl 1485.76055) Full Text: DOI arXiv OpenURL
Fernandez, Arran; Bouzouina, Chaima Fractionalisation of complex d-bar derivatives. (English) Zbl 1462.30006 Complex Var. Elliptic Equ. 66, No. 3, 437-475 (2021). MSC: 30A99 26A33 PDF BibTeX XML Cite \textit{A. Fernandez} and \textit{C. Bouzouina}, Complex Var. Elliptic Equ. 66, No. 3, 437--475 (2021; Zbl 1462.30006) Full Text: DOI OpenURL
El-Nabulsi, Rami Ahmad; Golmankhaneh, Alireza Khalili On fractional and fractal Einstein’s field equations. (English) Zbl 1456.83006 Mod. Phys. Lett. A 36, No. 5, Article ID 2150030, 23 p. (2021). MSC: 83C05 28A80 26A33 PDF BibTeX XML Cite \textit{R. A. El-Nabulsi} and \textit{A. K. Golmankhaneh}, Mod. Phys. Lett. A 36, No. 5, Article ID 2150030, 23 p. (2021; Zbl 1456.83006) Full Text: DOI OpenURL
Yan, Zhi; Liu, Xianbin Fractional-order harmonic resonance in a multi-frequency excited fractional Duffing oscillator with distributed time delay. (English) Zbl 1484.34188 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105754, 19 p. (2021). MSC: 34K60 34K37 34K07 34K18 34K13 70K30 70K40 70K50 70K60 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{X. Liu}, Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105754, 19 p. (2021; Zbl 1484.34188) Full Text: DOI OpenURL
Ahmadova, Arzu; Huseynov, Ismail T.; Fernandez, Arran; Mahmudov, Nazim I. Trivariate Mittag-Leffler functions used to solve multi-order systems of fractional differential equations. (English) Zbl 1464.34005 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105735, 23 p. (2021). MSC: 34A05 34A08 34A30 33E12 PDF BibTeX XML Cite \textit{A. Ahmadova} et al., Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105735, 23 p. (2021; Zbl 1464.34005) Full Text: DOI OpenURL
Gdawiec, Krzysztof; Kotarski, Wiesław; Lisowska, Agnieszka Newton’s method with fractional derivatives and various iteration processes via visual analysis. (English) Zbl 1461.65087 Numer. Algorithms 86, No. 3, 953-1010 (2021). MSC: 65H10 26A33 PDF BibTeX XML Cite \textit{K. Gdawiec} et al., Numer. Algorithms 86, No. 3, 953--1010 (2021; Zbl 1461.65087) Full Text: DOI OpenURL
Moghaddam, B. P.; Mostaghim, Z. S.; Pantelous, Athanasios A.; Machado, J. A. Tenreiro An integro quadratic spline-based scheme for solving nonlinear fractional stochastic differential equations with constant time delay. (English) Zbl 1455.65017 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105475, 16 p. (2021). MSC: 65C30 26A33 34K37 34K50 60H35 PDF BibTeX XML Cite \textit{B. P. Moghaddam} et al., Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105475, 16 p. (2021; Zbl 1455.65017) Full Text: DOI OpenURL
Abu Arqub, Omar; Al-Smadi, Mohammed Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions. (English) Zbl 07558720 Soft Comput. 24, No. 16, 12501-12522 (2020). MSC: 34A08 34A07 PDF BibTeX XML Cite \textit{O. Abu Arqub} and \textit{M. Al-Smadi}, Soft Comput. 24, No. 16, 12501--12522 (2020; Zbl 07558720) Full Text: DOI OpenURL
Su, Weiwei; Deng, Hanying; Dong, Liangwei; Huang, Zhenfen; Huang, Changming Stabilization of fundamental solitons in the nonlinear fractional Schrödinger equation with \(\text{PT} \)-symmetric nonlinear lattices. (English) Zbl 07511269 Chaos Solitons Fractals 141, Article ID 110427, 6 p. (2020). MSC: 35-XX 37-XX PDF BibTeX XML Cite \textit{W. Su} et al., Chaos Solitons Fractals 141, Article ID 110427, 6 p. (2020; Zbl 07511269) Full Text: DOI OpenURL
Rayal, Ashish; Ram Verma, Sag Numerical analysis of pantograph differential equation of the stretched type associated with fractal-fractional derivatives via fractional order Legendre wavelets. (English) Zbl 07505097 Chaos Solitons Fractals 139, Article ID 110076, 18 p. (2020). MSC: 65L03 34K27 26A33 PDF BibTeX XML Cite \textit{A. Rayal} and \textit{S. Ram Verma}, Chaos Solitons Fractals 139, Article ID 110076, 18 p. (2020; Zbl 07505097) Full Text: DOI OpenURL
Makris, Nicos On the physical meaning of time-domain constitutive models with complex parameters. (English) Zbl 1483.74020 Meccanica 55, No. 3, 453-467 (2020). MSC: 74D99 74S70 PDF BibTeX XML Cite \textit{N. Makris}, Meccanica 55, No. 3, 453--467 (2020; Zbl 1483.74020) Full Text: DOI OpenURL
Kumar, Ashish; Chauhan, Harsh Vardhan Singh; Ravichandran, Chokkalingam; Nisar, Kottakkaran Sooppy; Baleanu, Dumitru Existence of solutions of non-autonomous fractional differential equations with integral impulse condition. (English) Zbl 1486.34155 Adv. Difference Equ. 2020, Paper No. 434, 14 p. (2020). MSC: 34K37 26A33 34A08 47N20 PDF BibTeX XML Cite \textit{A. Kumar} et al., Adv. Difference Equ. 2020, Paper No. 434, 14 p. (2020; Zbl 1486.34155) Full Text: DOI OpenURL
Momani, Shaher; Maayah, Banan; Arqub, Omar Abu The reproducing kernel algorithm for numerical solution of Van der Pol damping model in view of the Atangana-Baleanu fractional approach. (English) Zbl 07468592 Fractals 28, No. 8, Article ID 2040010, 12 p. (2020). MSC: 65Mxx PDF BibTeX XML Cite \textit{S. Momani} et al., Fractals 28, No. 8, Article ID 2040010, 12 p. (2020; Zbl 07468592) Full Text: DOI OpenURL
Momani, Shaher; Arqub, Omar Abu; Maayah, Banan Piecewise optimal fractional reproducing kernel solution and convergence analysis for the Atangana-Baleanu-Caputo model of the Lienard’s equation. (English) Zbl 07468589 Fractals 28, No. 8, Article ID 2040007, 13 p. (2020). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{S. Momani} et al., Fractals 28, No. 8, Article ID 2040007, 13 p. (2020; Zbl 07468589) Full Text: DOI OpenURL
Buonocore, Salvatore; Sen, Mihir; Semperlotti, Fabio Stochastic scattering model of anomalous diffusion in arrays of steady vortices. (English) Zbl 1472.82033 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2238, Article ID 20200183, 23 p. (2020). MSC: 82C70 PDF BibTeX XML Cite \textit{S. Buonocore} et al., Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2238, Article ID 20200183, 23 p. (2020; Zbl 1472.82033) Full Text: DOI OpenURL
Bouzenna, Fatma El-Ghenbazia; Korichi, Zineb; Meftah, Mohammed Tayeb Solutions of nonlocal Schrödinger equation via the Caputo-Fabrizio definition for some quantum systems. (English) Zbl 07388504 Rep. Math. Phys. 85, No. 1, 57-67 (2020). MSC: 81-XX 35-XX PDF BibTeX XML Cite \textit{F. E. G. Bouzenna} et al., Rep. Math. Phys. 85, No. 1, 57--67 (2020; Zbl 07388504) Full Text: DOI OpenURL
Patnaik, Sansit; Semperlotti, Fabio Variable-order particle dynamics: formulation and application to the simulation of edge dislocations. (English) Zbl 1462.74172 Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 378, No. 2172, Article ID 20190290, 15 p. (2020). MSC: 74S40 74-10 26A33 PDF BibTeX XML Cite \textit{S. Patnaik} and \textit{F. Semperlotti}, Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 378, No. 2172, Article ID 20190290, 15 p. (2020; Zbl 1462.74172) Full Text: DOI OpenURL
Povstenko, Y.; Kyrylych, T. Fractional thermoelasticity problem for an infinite solid with a penny-shaped crack under prescribed heat flux across its surfaces. (English) Zbl 1464.74005 Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 378, No. 2172, Article ID 20190289, 14 p. (2020). MSC: 74A15 74F05 26A33 80A19 PDF BibTeX XML Cite \textit{Y. Povstenko} and \textit{T. Kyrylych}, Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 378, No. 2172, Article ID 20190289, 14 p. (2020; Zbl 1464.74005) Full Text: DOI OpenURL
Golmankhaneh, Ali Khalili; Ashrafi, Saleh; Baleanu, Dumitru; Fernandez, Arran Brownian motion on Cantor sets. (English) Zbl 07336596 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 3-4, 275-281 (2020). MSC: 28A80 60G22 PDF BibTeX XML Cite \textit{A. K. Golmankhaneh} et al., Int. J. Nonlinear Sci. Numer. Simul. 21, No. 3--4, 275--281 (2020; Zbl 07336596) Full Text: DOI OpenURL
Vanterler da Costa Sousa, José Existence results and continuity dependence of solutions for fractional equations. (English) Zbl 07332058 Differ. Equ. Appl. 12, No. 4, 377-396 (2020). MSC: 34K30 26A33 34K37 PDF BibTeX XML Cite \textit{J. Vanterler da Costa Sousa}, Differ. Equ. Appl. 12, No. 4, 377--396 (2020; Zbl 07332058) Full Text: DOI OpenURL
Chen, Xingru; Gu, Haibo; Sun, Yu Optimal controls for a class of impulsive Katugampola fractional differential equations with nonlocal conditions. (English) Zbl 1458.93112 J. Funct. Spaces 2020, Article ID 3142801, 9 p. (2020). MSC: 93C15 93C25 34A08 34A37 49J15 PDF BibTeX XML Cite \textit{X. Chen} et al., J. Funct. Spaces 2020, Article ID 3142801, 9 p. (2020; Zbl 1458.93112) Full Text: DOI OpenURL
Molina, Mario I. The two-dimensional fractional discrete nonlinear Schrödinger equation. (English) Zbl 1448.34146 Phys. Lett., A 384, No. 33, Article ID 126835, 6 p. (2020). MSC: 34K37 35Q55 81Q05 PDF BibTeX XML Cite \textit{M. I. Molina}, Phys. Lett., A 384, No. 33, Article ID 126835, 6 p. (2020; Zbl 1448.34146) Full Text: DOI arXiv OpenURL
Molina, Mario I. The fractional discrete nonlinear Schrödinger equation. (English) Zbl 1448.35557 Phys. Lett., A 384, No. 8, Article ID 126180, 5 p. (2020). MSC: 35R11 35Q55 PDF BibTeX XML Cite \textit{M. I. Molina}, Phys. Lett., A 384, No. 8, Article ID 126180, 5 p. (2020; Zbl 1448.35557) Full Text: DOI arXiv OpenURL
Iqbal, Sajid; Pecaric, Josip; Samraiz, Muhammad; Tehmeena, Hassan; Tomovski, Zivorad On some weighted Hardy-type inequalities involving extended Riemann-Liouville fractional calculus operators. (English) Zbl 1451.26027 Commun. Korean Math. Soc. 35, No. 1, 161-184 (2020). MSC: 26D15 26A33 26D10 PDF BibTeX XML Cite \textit{S. Iqbal} et al., Commun. Korean Math. Soc. 35, No. 1, 161--184 (2020; Zbl 1451.26027) Full Text: DOI OpenURL
Mainardi, Francesco; Masina, Enrico Erratum to: “On modifications of the exponential integral with the Mittag-Leffler function”. (English) Zbl 1442.33012 Fract. Calc. Appl. Anal. 23, No. 2, 600-603 (2020). MSC: 33E12 26A33 33E20 44A10 74D05 PDF BibTeX XML Cite \textit{F. Mainardi} and \textit{E. Masina}, Fract. Calc. Appl. Anal. 23, No. 2, 600--603 (2020; Zbl 1442.33012) Full Text: DOI OpenURL
Rashidinia, Jalil; Mohmedi, Elham Approximate solution of the multi-term time fractional diffusion and diffusion-wave equations. (English) Zbl 1463.65327 Comput. Appl. Math. 39, No. 3, Paper No. 216, 25 p. (2020). MSC: 65M70 42C10 65M12 35R11 PDF BibTeX XML Cite \textit{J. Rashidinia} and \textit{E. Mohmedi}, Comput. Appl. Math. 39, No. 3, Paper No. 216, 25 p. (2020; Zbl 1463.65327) Full Text: DOI OpenURL
Li, Dong; Liu, Yang; Wang, Chunli Multiple positive solutions for fractional three-point boundary value problem with \(p\)-Laplacian operator. (English) Zbl 1459.34025 Math. Probl. Eng. 2020, Article ID 2327580, 6 p. (2020). MSC: 34A08 34B10 34B18 PDF BibTeX XML Cite \textit{D. Li} et al., Math. Probl. Eng. 2020, Article ID 2327580, 6 p. (2020; Zbl 1459.34025) Full Text: DOI OpenURL
Zhai, Shuying; Wu, Longyuan; Wang, Jingying; Weng, Zhifeng Numerical approximation of the fractional Cahn-Hilliard equation by operator splitting method. (English) Zbl 1447.65037 Numer. Algorithms 84, No. 3, 1155-1178 (2020). Reviewer: Srinivasan Natesan (Assam) MSC: 65M06 65M70 65M12 35R11 26A33 65L06 PDF BibTeX XML Cite \textit{S. Zhai} et al., Numer. Algorithms 84, No. 3, 1155--1178 (2020; Zbl 1447.65037) Full Text: DOI OpenURL
Kumar, Ashish; Pandey, Dwijendra N. Existence of mild solution of Atangana-Baleanu fractional differential equations with non-instantaneous impulses and with non-local conditions. (English) Zbl 1434.34069 Chaos Solitons Fractals 132, Article ID 109551, 6 p. (2020). MSC: 34K37 34K45 34A08 34A12 PDF BibTeX XML Cite \textit{A. Kumar} and \textit{D. N. Pandey}, Chaos Solitons Fractals 132, Article ID 109551, 6 p. (2020; Zbl 1434.34069) Full Text: DOI OpenURL
Soori, Z.; Aminataei, A. Numerical solution of space fractional diffusion equation by spline method combined with Richardson extrapolation. (English) Zbl 1463.65188 Comput. Appl. Math. 39, No. 2, Paper No. 136, 18 p. (2020). MSC: 65L06 41A15 PDF BibTeX XML Cite \textit{Z. Soori} and \textit{A. Aminataei}, Comput. Appl. Math. 39, No. 2, Paper No. 136, 18 p. (2020; Zbl 1463.65188) Full Text: DOI OpenURL
Brzeziński, Dariusz W. Fractional order derivative and integral computation with a small number of discrete input values using Grünwald-Letnikov formula. (English) Zbl 07205448 Int. J. Comput. Methods 17, No. 5, Article ID 1940006, 16 p. (2020). MSC: 65-XX 41-XX PDF BibTeX XML Cite \textit{D. W. Brzeziński}, Int. J. Comput. Methods 17, No. 5, Article ID 1940006, 16 p. (2020; Zbl 07205448) Full Text: DOI OpenURL
Vellasco-Gomes, Arianne; de Figueiredo Camargo, Rubens; Bruno-Alfonso, Alexys Energy bands and Wannier functions of the fractional Kronig-Penney model. (English) Zbl 1460.81021 Appl. Math. Comput. 380, Article ID 125266, 16 p. (2020). MSC: 81Q05 35R11 81Q80 26A33 42A38 35B40 81R05 82D20 PDF BibTeX XML Cite \textit{A. Vellasco-Gomes} et al., Appl. Math. Comput. 380, Article ID 125266, 16 p. (2020; Zbl 1460.81021) Full Text: DOI OpenURL
Han, Beom-Seok; Kim, Kyeong-Hun; Park, Daehan Weighted \(L_q(L_{p})\)-estimate with Muckenhoupt weights for the diffusion-wave equations with time-fractional derivatives. (English) Zbl 1448.35545 J. Differ. Equations 269, No. 4, 3515-3550 (2020). MSC: 35R11 35K15 45D05 45K05 45N05 35B65 26A33 PDF BibTeX XML Cite \textit{B.-S. Han} et al., J. Differ. Equations 269, No. 4, 3515--3550 (2020; Zbl 1448.35545) Full Text: DOI arXiv OpenURL
Joshi, Hardik; Jha, Brajesh Kumar Fractional-order mathematical model for calcium distribution in nerve cells. (English) Zbl 1449.35443 Comput. Appl. Math. 39, No. 2, Paper No. 56, 22 p. (2020). MSC: 35R11 92B05 97M10 PDF BibTeX XML Cite \textit{H. Joshi} and \textit{B. K. Jha}, Comput. Appl. Math. 39, No. 2, Paper No. 56, 22 p. (2020; Zbl 1449.35443) Full Text: DOI OpenURL
Yin, Baoli; Liu, Yang; Li, Hong A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations. (English) Zbl 1433.65231 Appl. Math. Comput. 368, Article ID 124799, 20 p. (2020). MSC: 65M60 35R11 PDF BibTeX XML Cite \textit{B. Yin} et al., Appl. Math. Comput. 368, Article ID 124799, 20 p. (2020; Zbl 1433.65231) Full Text: DOI OpenURL
Trejo-Zúñiga, Iván; Delfín-Prieto, Sergio M.; Martínez-Guerra, Rafael Fractional controller based on a robust \(PI^\alpha\) observer for uncertain fractional systems. (English) Zbl 1482.93115 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 50, No. 4, 829-842 (2019). MSC: 93B12 93B53 93C15 26A33 PDF BibTeX XML Cite \textit{I. Trejo-Zúñiga} et al., Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 50, No. 4, 829--842 (2019; Zbl 1482.93115) Full Text: DOI OpenURL
Khan, Hasib; Abdeljawad, Thabet; Tunç, Cemil; Alkhazzan, Abdulwasea; Khan, Aziz Minkowski’s inequality for the AB-fractional integral operator. (English) Zbl 07459124 J. Inequal. Appl. 2019, Paper No. 96, 12 p. (2019). MSC: 26Axx 26Dxx 34Axx PDF BibTeX XML Cite \textit{H. Khan} et al., J. Inequal. Appl. 2019, Paper No. 96, 12 p. (2019; Zbl 07459124) Full Text: DOI OpenURL
Chauhan, Astha; Arora, Rajan Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis. (English) Zbl 1464.34018 Commun. Math. 27, No. 2, 171-185 (2019). MSC: 34A08 26A33 76M60 PDF BibTeX XML Cite \textit{A. Chauhan} and \textit{R. Arora}, Commun. Math. 27, No. 2, 171--185 (2019; Zbl 1464.34018) Full Text: DOI OpenURL
de Oliveira, E. Capelas; Jarosz, S.; Vaz, J. jun. Fractional calculus via Laplace transform and its application in relaxation processes. (English) Zbl 1457.76153 Commun. Nonlinear Sci. Numer. Simul. 69, 58-72 (2019). MSC: 76R50 26A33 PDF BibTeX XML Cite \textit{E. C. de Oliveira} et al., Commun. Nonlinear Sci. Numer. Simul. 69, 58--72 (2019; Zbl 1457.76153) Full Text: DOI OpenURL
Povstenko, Yuriy Generalized theory of diffusive stresses associated with the time-fractional diffusion equation and nonlocal constitutive equations for the stress tensor. (English) Zbl 1442.74006 Comput. Math. Appl. 78, No. 6, 1819-1825 (2019). MSC: 74A10 74F25 PDF BibTeX XML Cite \textit{Y. Povstenko}, Comput. Math. Appl. 78, No. 6, 1819--1825 (2019; Zbl 1442.74006) Full Text: DOI OpenURL
Povstenko, Yuriy; Kyrylych, Tamara Time-fractional heat conduction in an infinite plane containing an external crack under heat flux loading. (English) Zbl 1442.74060 Comput. Math. Appl. 78, No. 5, 1386-1395 (2019). MSC: 74F05 35R11 PDF BibTeX XML Cite \textit{Y. Povstenko} and \textit{T. Kyrylych}, Comput. Math. Appl. 78, No. 5, 1386--1395 (2019; Zbl 1442.74060) Full Text: DOI OpenURL
Giresse, Tene Alain; Crepin, Kofane Timoleon; Martin, Tchoffo Generalized synchronization of the extended Hindmarsh-Rose neuronal model with fractional order derivative. (English) Zbl 1442.34013 Chaos Solitons Fractals 118, 311-319 (2019). MSC: 34A08 34C28 34D06 PDF BibTeX XML Cite \textit{T. A. Giresse} et al., Chaos Solitons Fractals 118, 311--319 (2019; Zbl 1442.34013) Full Text: DOI OpenURL
Nyamoradi, Nemat; Tersian, Stepan Existence of solutions for nonlinear fractional order \(p\)-Laplacian differential equations via critical point theory. (English) Zbl 1481.34089 Fract. Calc. Appl. Anal. 22, No. 4, 945-967 (2019). Reviewer: Samir Bashir Hadid (Ajman) MSC: 34K37 34K10 58E50 PDF BibTeX XML Cite \textit{N. Nyamoradi} and \textit{S. Tersian}, Fract. Calc. Appl. Anal. 22, No. 4, 945--967 (2019; Zbl 1481.34089) Full Text: DOI OpenURL
Khalouta, Ali; Kadem, Abdelouahab An efficient method for solving nonlinear time-fractional wave-like equations with variable coefficients. (English) Zbl 1432.35224 Tbil. Math. J. 12, No. 4, 131-147 (2019). MSC: 35R11 35Q74 35C05 74G10 PDF BibTeX XML Cite \textit{A. Khalouta} and \textit{A. Kadem}, Tbil. Math. J. 12, No. 4, 131--147 (2019; Zbl 1432.35224) Full Text: DOI Euclid OpenURL
Khalouta, Ali; Kadem, Abdelouahab A new method to solve fractional differential equations: inverse fractional Shehu transform method. (English) Zbl 1435.34014 Appl. Appl. Math. 14, No. 2, 926-941 (2019). Reviewer: Garik Petrosyan (Voronezh) MSC: 34A08 26A33 44A15 PDF BibTeX XML Cite \textit{A. Khalouta} and \textit{A. Kadem}, Appl. Appl. Math. 14, No. 2, 926--941 (2019; Zbl 1435.34014) Full Text: Link OpenURL
Ibrahim, Rabha W. A quasi-linear utility function of fractional agent-based computational economic systems defined by Palm calculus. (English) Zbl 1435.91087 São Paulo J. Math. Sci. 13, No. 2, 708-720 (2019). Reviewer: Jonas Šiaulys (Vilnius) MSC: 91B16 26A33 PDF BibTeX XML Cite \textit{R. W. Ibrahim}, São Paulo J. Math. Sci. 13, No. 2, 708--720 (2019; Zbl 1435.91087) Full Text: DOI OpenURL
Torres Ledesma, César E. Existence of solution for a general fractional advection-dispersion equation. (English) Zbl 1427.35339 Anal. Math. Phys. 9, No. 3, 1303-1318 (2019). MSC: 35R11 34A08 34C37 35A15 35B38 PDF BibTeX XML Cite \textit{C. E. Torres Ledesma}, Anal. Math. Phys. 9, No. 3, 1303--1318 (2019; Zbl 1427.35339) Full Text: DOI OpenURL
Golmankhaneh, Alireza K.; Tunç, Cemil Sumudu transform in fractal calculus. (English) Zbl 1428.28014 Appl. Math. Comput. 350, 386-401 (2019). MSC: 28A80 44A10 58C35 PDF BibTeX XML Cite \textit{A. K. Golmankhaneh} and \textit{C. Tunç}, Appl. Math. Comput. 350, 386--401 (2019; Zbl 1428.28014) Full Text: DOI OpenURL
Kim, Ildoo; Kim, Kyeong-Hun; Lim, Sungbin A Sobolev space theory for stochastic partial differential equations with time-fractional derivatives. (English) Zbl 1446.60044 Ann. Probab. 47, No. 4, 2087-2139 (2019). Reviewer: Yuliya S. Mishura (Kyïv) MSC: 60H15 35R60 45D05 60H40 PDF BibTeX XML Cite \textit{I. Kim} et al., Ann. Probab. 47, No. 4, 2087--2139 (2019; Zbl 1446.60044) Full Text: DOI arXiv Euclid OpenURL
Shah, Kamal; Wang, Jinrong A numerical scheme based on non-discretization of data for boundary value problems of fractional order differential equations. (English) Zbl 1418.65084 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2277-2294 (2019). MSC: 65L10 34A08 34G10 PDF BibTeX XML Cite \textit{K. Shah} and \textit{J. Wang}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2277--2294 (2019; Zbl 1418.65084) Full Text: DOI OpenURL
Sousa, J. Vanterler da C.; de Oliveira, E. Capelas Fractional order pseudoparabolic partial differential equation: Ulam-Hyers stability. (English) Zbl 1415.35284 Bull. Braz. Math. Soc. (N.S.) 50, No. 2, 481-496 (2019). MSC: 35R11 35K70 PDF BibTeX XML Cite \textit{J. V. da C. Sousa} and \textit{E. C. de Oliveira}, Bull. Braz. Math. Soc. (N.S.) 50, No. 2, 481--496 (2019; Zbl 1415.35284) Full Text: DOI arXiv OpenURL
Migórski, Stanisław; Zeng, Shengda The Rothe method for multi-term time fractional integral diffusion equations. (English) Zbl 07000390 Discrete Contin. Dyn. Syst., Ser. B 24, No. 2, 719-735 (2019). MSC: 35A01 35K57 39Axx 46Txx 47D03 PDF BibTeX XML Cite \textit{S. Migórski} and \textit{S. Zeng}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 2, 719--735 (2019; Zbl 07000390) Full Text: DOI OpenURL
Berman, Michael; Cederbaum, Lorenz S. Fractional driven-damped oscillator and its general closed form exact solution. (English) Zbl 07550319 Physica A 505, 744-762 (2018). MSC: 82-XX PDF BibTeX XML Cite \textit{M. Berman} and \textit{L. S. Cederbaum}, Physica A 505, 744--762 (2018; Zbl 07550319) Full Text: DOI OpenURL
Ludu, Andrei Nonlocal symmetries for time-dependent order differential equations. (English) Zbl 1425.34019 Symmetry 10, No. 12, Paper No. 771, 9 p. (2018). MSC: 34A08 PDF BibTeX XML Cite \textit{A. Ludu}, Symmetry 10, No. 12, Paper No. 771, 9 p. (2018; Zbl 1425.34019) Full Text: DOI OpenURL
Benjemaa, Mondher Taylor’s formula involving generalized fractional derivatives. (English) Zbl 1427.26002 Appl. Math. Comput. 335, 182-195 (2018). MSC: 26A24 26A33 34A08 41A58 44A15 45K05 PDF BibTeX XML Cite \textit{M. Benjemaa}, Appl. Math. Comput. 335, 182--195 (2018; Zbl 1427.26002) Full Text: DOI arXiv OpenURL
Mainardi, Francesco; Masina, Enrico On modifications of the exponential integral with the Mittag-Leffler function. (English) Zbl 1426.33053 Fract. Calc. Appl. Anal. 21, No. 5, 1156-1169 (2018); erratum ibid. 23, No. 2, 600-603 (2020). MSC: 33E12 26A33 33E20 44A10 74D05 PDF BibTeX XML Cite \textit{F. Mainardi} and \textit{E. Masina}, Fract. Calc. Appl. Anal. 21, No. 5, 1156--1169 (2018; Zbl 1426.33053) Full Text: DOI arXiv OpenURL
Shao, Guangming; Liu, Biao; Liu, Yueying The unique existence of weak solution and the optimal control for time-fractional third grade fluid system. (English) Zbl 1407.76005 Complexity 2018, Article ID 7941012, 12 p. (2018). MSC: 76A05 35Q35 49J20 PDF BibTeX XML Cite \textit{G. Shao} et al., Complexity 2018, Article ID 7941012, 12 p. (2018; Zbl 1407.76005) Full Text: DOI OpenURL
Varol Bayram, Dilek; Daşcıoğlu, Ayşegül A method for fractional Volterra integro-differential equations by Laguerre polynomials. (English) Zbl 1448.65287 Adv. Difference Equ. 2018, Paper No. 466, 11 p. (2018). MSC: 65R20 26A33 45J05 45D05 34A08 PDF BibTeX XML Cite \textit{D. Varol Bayram} and \textit{A. Daşcıoğlu}, Adv. Difference Equ. 2018, Paper No. 466, 11 p. (2018; Zbl 1448.65287) Full Text: DOI OpenURL
Zhou, Han; Zegeling, Paul Andries Stability and convergence analysis of a class of continuous piecewise polynomial approximations for time-fractional differential equations. (English) Zbl 1406.65048 J. Sci. Comput. 77, No. 1, 225-262 (2018). MSC: 65L05 34A08 65R20 PDF BibTeX XML Cite \textit{H. Zhou} and \textit{P. A. Zegeling}, J. Sci. Comput. 77, No. 1, 225--262 (2018; Zbl 1406.65048) Full Text: DOI arXiv OpenURL
Sen, Syamal K.; Vasundhara Devi, J.; Ravi Kumar, R. V. G. Can fractional calculus be generalized? Problems and efforts. (English) Zbl 1413.26014 Eur. J. Pure Appl. Math. 11, No. 4, 1058-1099 (2018). MSC: 26A33 26A36 34A08 44A45 PDF BibTeX XML Cite \textit{S. K. Sen} et al., Eur. J. Pure Appl. Math. 11, No. 4, 1058--1099 (2018; Zbl 1413.26014) Full Text: Link OpenURL
Sousa, J. Vanterler da C.; de Oliveira, E. Capelas Two new fractional derivatives of variable order with non-singular kernel and fractional differential equation. (English) Zbl 1401.26016 Comput. Appl. Math. 37, No. 4, 5375-5394 (2018). MSC: 26A33 34A08 PDF BibTeX XML Cite \textit{J. V. da C. Sousa} and \textit{E. C. de Oliveira}, Comput. Appl. Math. 37, No. 4, 5375--5394 (2018; Zbl 1401.26016) Full Text: DOI arXiv OpenURL
Torres Ledesma, César E. Existence and concentration of solution for a class of fractional Hamiltonian systems with subquadratic potential. (English) Zbl 1401.35324 Proc. Indian Acad. Sci., Math. Sci. 128, No. 4, Paper No. 50, 16 p. (2018). MSC: 35R11 35A15 35B38 PDF BibTeX XML Cite \textit{C. E. Torres Ledesma}, Proc. Indian Acad. Sci., Math. Sci. 128, No. 4, Paper No. 50, 16 p. (2018; Zbl 1401.35324) Full Text: DOI arXiv OpenURL
Khawaja, U Al; Al-Refai, M; Shchedrin, Gavriil; Carr, Lincoln D High-accuracy power series solutions with arbitrarily large radius of convergence for the fractional nonlinear Schrödinger-type equations. (English) Zbl 1397.35280 J. Phys. A, Math. Theor. 51, No. 23, Article ID 235201, 16 p. (2018). MSC: 35Q55 35R11 35C10 35C08 33E05 PDF BibTeX XML Cite \textit{U A. Khawaja} et al., J. Phys. A, Math. Theor. 51, No. 23, Article ID 235201, 16 p. (2018; Zbl 1397.35280) Full Text: DOI OpenURL
Jong, KumSong Existence and uniqueness of positive solutions of a kind of multi-point boundary value problems for nonlinear fractional differential equations with \(p\)-Laplacian operator. (English) Zbl 1395.34005 Mediterr. J. Math. 15, No. 3, Paper No. 129, 17 p. (2018). MSC: 34A08 34B15 34B10 34B18 47N20 PDF BibTeX XML Cite \textit{K. Jong}, Mediterr. J. Math. 15, No. 3, Paper No. 129, 17 p. (2018; Zbl 1395.34005) Full Text: DOI OpenURL
Baeumer, Boris; Kovács, Mihály; Meerschaert, Mark M.; Sankaranarayanan, Harish Reprint of: boundary conditions for fractional diffusion. (English) Zbl 06867170 J. Comput. Appl. Math. 339, 414-430 (2018). MSC: 35-XX 65-XX PDF BibTeX XML Cite \textit{B. Baeumer} et al., J. Comput. Appl. Math. 339, 414--430 (2018; Zbl 06867170) Full Text: DOI OpenURL
Kelly, James F.; Li, Cheng-Gang; Meerschaert, Mark M. Anomalous diffusion with ballistic scaling: a new fractional derivative. (English) Zbl 06867150 J. Comput. Appl. Math. 339, 161-178 (2018). MSC: 35-XX 26-XX PDF BibTeX XML Cite \textit{J. F. Kelly} et al., J. Comput. Appl. Math. 339, 161--178 (2018; Zbl 06867150) Full Text: DOI OpenURL
Baeumer, Boris; Kovács, Mihály; Meerschaert, Mark M.; Sankaranarayanan, Harish Boundary conditions for fractional diffusion. (English) Zbl 1386.35424 J. Comput. Appl. Math. 336, 408-424 (2018). MSC: 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{B. Baeumer} et al., J. Comput. Appl. Math. 336, 408--424 (2018; Zbl 1386.35424) Full Text: DOI arXiv OpenURL
Kiskinov, Hristo; Milev, Nedelcho; Zahariev, Andrey A comparison type theorem for linear neutral fractional systems with distributed delays. (English) Zbl 1465.34090 Pasheva, Vesela (ed.) et al., Proceedings of the 43rd international conference on applications of mathematics in engineering and economics, AMEE’17, Sozopol, Bulgaria, June 8–13, 2017. Melville, NY: American Institute of Physics (AIP). AIP Conf. Proc. 1910, Article 050009, 9 p. (2017). MSC: 34K40 34K37 PDF BibTeX XML Cite \textit{H. Kiskinov} et al., AIP Conf. Proc. 1910, Article 050009, 9 p. (2017; Zbl 1465.34090) Full Text: DOI OpenURL
Zaczkiewicz, Zbigniew Fractional differential-algebraic systems with delay: computation of final dimension initial conditions and inputs for given outputs. (English) Zbl 1425.93125 Babiarz, Artur (ed.) et al., Theory and applications of non-integer order systems. Papers of the 8th conference on non-integer order calculus and its applications, Zakopane, Poland, September 20–21, 2016. Cham: Springer. Lect. Notes Electr. Eng. 407, 391-401 (2017). MSC: 93C15 26A33 93B25 93B07 PDF BibTeX XML Cite \textit{Z. Zaczkiewicz}, Lect. Notes Electr. Eng. 407, 391--401 (2017; Zbl 1425.93125) Full Text: DOI OpenURL
Mohammed, Pshtiwan Othman Inequalities of \((k,s)\), \((k,h)\)-type for Riemann-Liouville fractional integrals. (English) Zbl 1411.26007 Appl. Math. E-Notes 17, 199-206 (2017). MSC: 26A33 26D15 PDF BibTeX XML Cite \textit{P. O. Mohammed}, Appl. Math. E-Notes 17, 199--206 (2017; Zbl 1411.26007) Full Text: Link OpenURL
Evans, Ryan M.; Katugampola, Udita N.; Edwards, David A. Applications of fractional calculus in solving Abel-type integral equations: surface-volume reaction problem. (English) Zbl 1409.65114 Comput. Math. Appl. 73, No. 6, 1346-1362 (2017). MSC: 65R20 45E10 PDF BibTeX XML Cite \textit{R. M. Evans} et al., Comput. Math. Appl. 73, No. 6, 1346--1362 (2017; Zbl 1409.65114) Full Text: DOI arXiv OpenURL
Alrawashdeh, Mahmoud S.; Kelly, James F.; Meerschaert, Mark M.; Scheffler, Hans-Peter Applications of inverse tempered stable subordinators. (English) Zbl 1409.60058 Comput. Math. Appl. 73, No. 6, 892-905 (2017). MSC: 60G22 60G55 35R11 PDF BibTeX XML Cite \textit{M. S. Alrawashdeh} et al., Comput. Math. Appl. 73, No. 6, 892--905 (2017; Zbl 1409.60058) Full Text: DOI OpenURL