Vakulov, B. G.; Drobotov, Yu. E. Riesz potential with integrable density in Hölder-variable spaces. (English. Russian original) Zbl 1454.42021 Math. Notes 108, No. 5, 652-660 (2020); translation from Mat. Zametki 108, No. 5, 669-678 (2020). MSC: 42B35 42B20 47G10 PDF BibTeX XML Cite \textit{B. G. Vakulov} and \textit{Yu. E. Drobotov}, Math. Notes 108, No. 5, 652--660 (2020; Zbl 1454.42021); translation from Mat. Zametki 108, No. 5, 669--678 (2020) Full Text: DOI OpenURL
Vakulov, B. G.; Kochurov, E. S.; Samko, N. G. Zygmund-type estimates for fractional integration and differentiation operators of variable order. (English. Russian original) Zbl 1266.47053 Russ. Math. 55, No. 6, 20-28 (2011); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2011, No. 6, 25-34 (2011). Reviewer: Humberto Rafeiro (Bogotá) MSC: 47B38 26A33 26A16 PDF BibTeX XML Cite \textit{B. G. Vakulov} et al., Russ. Math. 55, No. 6, 20--28 (2011; Zbl 1266.47053); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2011, No. 6, 25--34 (2011) Full Text: DOI OpenURL
Samko, Natasha; Vakulov, Boris Spherical fractional and hypersingular integrals of variable order in generalized Hölder spaces with variable characteristic. (English) Zbl 1220.46018 Math. Nachr. 284, No. 2-3, 355-369 (2011). MSC: 46E15 47G40 42B15 26A33 PDF BibTeX XML Cite \textit{N. Samko} and \textit{B. Vakulov}, Math. Nachr. 284, No. 2--3, 355--369 (2011; Zbl 1220.46018) Full Text: DOI OpenURL