×

MHD flow and heat transfer over a stretching surface with variable thermal conductivity and partial slip. (English) Zbl 1293.76175

Summary: In this paper we analyze the flow and heat transfer of an MHD fluid over an impermeable stretching surface with variable thermal conductivity and non-uniform heat source/sink in the presence of partial slip. The governing partial differential equations of the problem are reduced to nonlinear ordinary differential equations by using a similarity transformation. The temperature boundary conditions are assumed to be linear functions of the distance from the origin. Analytical solutions of the energy equations for Prescribed Surface Temperature (PST) and Prescribed Heat Flux (PHF) cases are obtained in terms of a hypergeometric function, without applying the boundary-layer approximation. The effects of the governing parameters on the flow and heat transfer fields are presented through tables and graphs, and they are discussed. Furthermore, the obtained numerical results for the skin friction, wall-temperature gradient and wall temperature are analyzed and compared with the available results in the literature for special cases.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76M55 Dimensional analysis and similarity applied to problems in fluid mechanics
80A20 Heat and mass transfer, heat flow (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Sakiadis BC (1961) Boundary-layer behavior on continuous solid surface: I. Boundary-layer equation for two dimensional and axisymmetric flow. AIChE J 7:26-28 · doi:10.1002/aic.690070108
[2] Sakiadis BC (1961) Boundary layer behavior on continuous solid surface: II. Boundary-layer on a continuous flat surface. AIChE J 7(2):221-225 · doi:10.1002/aic.690070211
[3] Blasius H (1908) Grenzschichten in Flussigkeiten mit kleiner Reibung. Z Math Phys 56:1-37 · JFM 39.0803.02
[4] Crane LJ (1970) Flow past a stretching sheet. Z Angew Math Phys 21:645-647 · doi:10.1007/BF01587695
[5] Carragher P, Crane LJ (1982) Heat transfer on a continuous stretching sheet. Z Angew Math Mech 62:564-565 · doi:10.1002/zamm.19820621009
[6] Gupta PS, Gupta AS (1977) Heat and mass transfer on a stretching sheet with suction or blowing. Can J Chem Eng 55:744-746 · doi:10.1002/cjce.5450550619
[7] Grubka LJ, Bobba KM (1985) Heat transfer characteristics of a continuous stretching surface with variable temperature. ASME J Heat Transfer 107:248-250 · doi:10.1115/1.3247387
[8] Chen CK, Char MI (1988) Heat transfer of a continuous stretching surface with suction or blowing. J Math Anal Appl 135:568-580 · Zbl 0652.76062 · doi:10.1016/0022-247X(88)90172-2
[9] Chiam TC (1997) Magnetohydrodynamic heat transfer over a non-isothermal stretching sheet. Acta Mech 122:169-179 · Zbl 0878.76082 · doi:10.1007/BF01181997
[10] Cortell R (2005) Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing. Fluid Dyn Res 37:231-245 · Zbl 1153.76423 · doi:10.1016/j.fluiddyn.2005.05.001
[11] Cortell R (2007) Viscous flow and heat transfer over a non-linearly stretching sheet. Appl Math Comput 184:864-873 · Zbl 1112.76022 · doi:10.1016/j.amc.2006.06.077
[12] Cortell R (2011) Heat and fluid flow due to non-linearly stretching surfaces. Appl Math Comput 217:7564-7572 · Zbl 1285.76009 · doi:10.1016/j.amc.2011.02.029
[13] Sarpakaya T (1961) Flow of non-Newtonian fluids in magnetic field. AIChE J 7:24-328
[14] Pal D, Mondal H (2010) Effect of variable viscosity on MHD non-Darcy mixed convective heat transfer over a stretching sheet embedded in a porous medium with non-uniform heat source/sink. Commun Nonlinear Sci Numer Simul 15:1553-1564 · Zbl 1221.76237 · doi:10.1016/j.cnsns.2009.07.002
[15] Pal D, Mondal H (2010) Hydromagnetic non-Darcy flow and heat transfer over a stretching sheet in the presence of thermal radiation and Ohmic dissipation. Commun Nonlinear Sci Numer Simul 15:1197-1209 · Zbl 1221.76236 · doi:10.1016/j.cnsns.2009.05.051
[16] Hayat T, Abbas Z, Pop I, Asghar S (2010) Effects of radiation and magnetic field on the mixed convection stagnation-point flow over a vertical stretching sheet in a porous medium. Int J Heat Mass Transf 53:466-474 · Zbl 1180.80022 · doi:10.1016/j.ijheatmasstransfer.2009.09.010
[17] Nandeppanavar MM, Vajravelu K, Abel MS (2011) Heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with thermal radiation and non-uniform heat source/sink. Commun Non-linear Sci Numer Simul 16:3578-3590 · Zbl 1312.76063 · doi:10.1016/j.cnsns.2010.12.033
[18] Chakrabarti A, Gupta AS (1979) Hydromagnetic flow and heat transfer over a stretching sheet. Q Appl Math 37:73-78 · Zbl 0402.76012
[19] Andersson HI, Bech KH, Dandapat BS (1992) Magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Int J Non-Linear Mech 27:929-936 · Zbl 0775.76216 · doi:10.1016/0020-7462(92)90045-9
[20] Datti PS, Prasad KV, Abel MS, Joshi A (2004) MHD visco-elastic fluid flow over a non-isothermal stretching sheet. Int J Eng Sci 42:935-946 · Zbl 1211.76143 · doi:10.1016/j.ijengsci.2003.09.008
[21] Abel S, Joshi A, Sonth RM (2001) Heat transfer in a MHD visco-elastic fluid over a stretching surface. Z Angew Math Mech 81:691-698 · Zbl 0997.80010 · doi:10.1002/1521-4001(200110)81:10<691::AID-ZAMM691>3.0.CO;2-Z
[22] Abel MS, Khan SK, Prasad KV (2002) Study of visco-elastic fluid flow and heat transfer over a stretching sheet with variable viscosity. Int J Non-Linear Mech 37(1):81 · Zbl 1117.76302 · doi:10.1016/S0020-7462(00)00098-6
[23] Vajravelu K, Rollins D (1992) Heat transfer in electrically conducting fluid over a stretching surface. Int J Non-Linear Mech 27(2):265-277 · Zbl 0775.76218 · doi:10.1016/0020-7462(92)90085-L
[24] Vajravelu K, Nayfeh J (1993) Convective heat transfer at a stretching sheet. Acta Mech 96:47-54 · Zbl 0775.76179 · doi:10.1007/BF01340699
[25] Vajravelu K, Cannon JR (2006) Fluid flow over a non-linear stretching sheet. Appl Math Comput 181:609-618 · Zbl 1143.76024 · doi:10.1016/j.amc.2005.08.051
[26] Bhattacharya K, Vajravelu K (2012) Stagnation-point flow and heat transfer over an exponentially shrinking sheet. Commun Nonlinear Sci Numer Simul 17:2728-2734 · doi:10.1016/j.cnsns.2011.11.011
[27] Abo-Eldahab EM, El Aziz MA (2004) Blowing/suction effect on hydromagnetic heat transfer by mixed convection from an inclined continuously stretching surface with internal heat generation/absorption. Int J Therm Sci 43:709-719 · doi:10.1016/j.ijthermalsci.2004.01.005
[28] Nandeppanavar MM, Vajravelu K, Abel MS, Ng C-O (2011) Heat transfer over a nonlinearly stretching sheet with non-uniform heat source and variable wall temperature. Int J Heat Mass Transf 54:4960-4965 · Zbl 1226.80018 · doi:10.1016/j.ijheatmasstransfer.2011.07.009
[29] Abel MS, Siddheshwar PG, Nandeppanavar MM (2007) Heat transfer in a viscoelastic fluid past a stretching sheet with non-uniform heat source. ???? 50:960-966 · Zbl 1124.80300
[30] Cortell Bataller R (2007) Viscoelastic fluid flow and heat transfer over a Stretching sheet under the effects of non-uniform heat source, viscous dissipation and thermal radiation. Int J Heat Mass Transf 50:3152-3162 · Zbl 1119.80306 · doi:10.1016/j.ijheatmasstransfer.2007.01.003
[31] Navier CLMH (1827) Sur les lois du mouvement des fluids. Men Acad R Sci Inst France 6:389-440
[32] Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30:197-207 · doi:10.1017/S0022112067001375
[33] Laplace P, Arquis E (1998) Boundary layer over a slotted plate. Eur J Mech B, Fluids 17:331-355. 1998 · Zbl 0922.76118 · doi:10.1016/S0997-7546(98)80262-8
[34] Miksis MJ, Davis SH (1994) Slip over rough and coated surfaces. J Fluid Mech 273:125-139 · Zbl 0814.76036 · doi:10.1017/S0022112094001874
[35] Gad-el-Hak M (1999) The fluid mechanics of micro devices—the Freeman scholar lecture. ASME J Fluids Eng 121:5-33 · doi:10.1115/1.2822013
[36] Andersson HI (2002) Slip flow past a stretching surface. Acta Mech 158:121-125 · Zbl 1013.76020 · doi:10.1007/BF01463174
[37] Malipatil SB (2011) Mathematical Analysis on some aspects of momentum, heat and mass transfer in viscous and viscoelastic boundary layer flow over stretching surface embedded in porous medium. Ph.D. thesis, Gulbarga University, Gulbarga-585106, Karnataka, India
[38] Ariel PD, Hayat T, Asghar S (2006) The flow of an elastico-viscous fluid past a stretching sheet with partial slip. Acta Mech 187:29-35 · Zbl 1103.76010 · doi:10.1007/s00707-006-0370-3
[39] Hayat T, Javed T, Abbas T (2008) Slip flow and heat transfer of a second grade fluid pas a stretching sheet through a porous space. Int J Heat Mass Transf 51:4528-4534 · Zbl 1144.80316 · doi:10.1016/j.ijheatmasstransfer.2007.12.022
[40] Andersson HI (1995) A exact solution of the Navier-Stokes equations for magneto hydrodynamics flow. Acta Mech 113:241-245 · Zbl 0863.76089 · doi:10.1007/BF01212646
[41] Pavlov KB (1974) magneto hydrodynamic flow of an incompressible viscous fluid caused by deformation of a plane surface. Magn Gidrodin 4:146-147
[42] Abramowitz M, Stegun LA (1972) Handbook of mathematical functions. National Bureau of Standards/Am Math Soc, Providence, p 55 · Zbl 0543.33001
[43] Wang CY (2002) Flow due to a stretching boundary with partial slip-an exact solution of the Navier-Stokes equation. Chem Eng Sci 57:3745-3747 · doi:10.1016/S0009-2509(02)00267-1
[44] Sahoo B (2010) Flow and heat transfer of a non-Newtonian fluid past a stretching sheet with partial slip. Commun Nonlinear Sci Numer Simul 15:602-615 · Zbl 1221.76021 · doi:10.1016/j.cnsns.2009.04.032
[45] Mostafa A, Mohamad A, Megahed AM (2012) non-uniform heat generation effect on heat transfer of a non-Newtonian power law fluid over a non-linear stretching sheet. Meccanica. doi:10.1007/s1102-011-9499-9 · Zbl 1293.76015 · doi:10.1007/s1102-011-9499-9
[46] Markin JH, Kumaran V (2012) The unsteady heat transfer due to a heat source in an MHD stretching sheet flow. Meccanica. doi:10.1007/s11012-012-9556-z · Zbl 1293.76174 · doi:10.1007/s11012-012-9556-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.