×

Generalized slow growth of special monogenic functions. (English) Zbl 1339.30021

Summary: In the present paper we study the generalized slow growth of special monogenic functions. The characterizations of generalized order, generalized lower order, generalized type and generalized lower type of special monogenic functions have been obtained in terms of their Taylor series coefficients.

MSC:

30G35 Functions of hypercomplex variables and generalized variables
Full Text: DOI

References:

[1] M. A. Abul-Ez and D. Constales, Basic sets of polynomials in Clifford analysis, Complex Var. Theory Appl. 14 (1990), 1-4, 177-185.; Abul-Ez, M. A.; Constales, D., Basic sets of polynomials in Clifford analysis, Complex Var. Theory Appl., 14, 1-4, 177-185 (1990) · Zbl 0663.41009
[2] M. A. Abul-Ez and D. Constales, Linear substitution for basic sets of polynomials in Clifford analysis, Port. Math. 48 (1991), 2, 143-154.; Abul-Ez, M. A.; Constales, D., Linear substitution for basic sets of polynomials in Clifford analysis, Port. Math., 48, 2, 143-154 (1991) · Zbl 0737.30029
[3] M. A. Abul-Ez and R. De Almeida, On the lower order and type of entire axially monogenic function, Results Math. 63 (2013), 1257-1275.; Abul-Ez, M. A.; De Almeida, R., On the lower order and type of entire axially monogenic function, Results Math., 63, 1257-1275 (2013) · Zbl 1270.30017
[4] R. De Almeida and R. S. Krausshar, On the asymptotic growth of entire monogenic functions, Z. Anal. Anwend. 24 (2005), 4, 791-813.; De Almeida, R.; Krausshar, R. S., On the asymptotic growth of entire monogenic functions, Z. Anal. Anwend., 24, 4, 791-813 (2005) · Zbl 1095.30044
[5] D. Constales, R. De Almeida and R. S. Krausshar, On the growth type of entire monogenic functions, Arch. Math. (Basel) 88 (2007), 153-163.; Constales, D.; De Almeida, R.; Krausshar, R. S., On the growth type of entire monogenic functions, Arch. Math. (Basel), 88, 153-163 (2007) · Zbl 1109.30040
[6] D. Constales, R. De Almeida and R. S. Krausshar, On the relation between the growth and the Taylor coefficients of entire solutions to the higher dimensional Cauchy-Riemann system in \(ℝ^{n+1}\), J. Math. Anal. App. 327 (2007), 763-775.; Constales, D.; De Almeida, R.; Krausshar, R. S., On the relation between the growth and the Taylor coefficients of entire solutions to the higher dimensional Cauchy-Riemann system in \(ℝ^{n+1}\), J. Math. Anal. App., 327, 763-775 (2007) · Zbl 1108.30041
[7] V. G. Iyer, A property of the maximum modulus of integral functions, J. Indian Math. Soc. (N. S.) 6 (1942), 69-80.; Iyer, V. G., A property of the maximum modulus of integral functions, J. Indian Math. Soc. (N. S.), 6, 69-80 (1942) · Zbl 0061.15004
[8] G. P. Kapoor and A. Nautiyal, Polynomial approximation of an entire function of slow growth, J. Approx. Theory 32 (1981), 64-75.; Kapoor, G. P.; Nautiyal, A., Polynomial approximation of an entire function of slow growth, J. Approx. Theory, 32, 64-75 (1981) · Zbl 0495.41005
[9] S. Kumar, Generalized growth of special monogenic functions, J. Complex Anal. 2014 (2014), Article ID 510232.; Kumar, S., Generalized growth of special monogenic functions, J. Complex Anal., 2014 (2014) · Zbl 1310.30041
[10] S. Kumar and K. Bala, Generalized type of entire monogenic functions of slow growth, Transylv. J. Math. Mech. 3 (2011), 2, 95-102.; Kumar, S.; Bala, K., Generalized type of entire monogenic functions of slow growth, Transylv. J. Math. Mech., 3, 2, 95-102 (2011) · Zbl 1273.30044
[11] S. Kumar and K. Bala, Generalized order of entire monogenic functions of slow growth, J. Nonlinear Sci. Appl. 5 (2012), 6, 418-425.; Kumar, S.; Bala, K., Generalized order of entire monogenic functions of slow growth, J. Nonlinear Sci. Appl., 5, 6, 418-425 (2012) · Zbl 1295.30114
[12] S. Kumar and K. Bala, Generalized growth of monogenic Taylor series of finite convergence radius, Ann. Univ. Ferrara Sez. VII Sci. Mat. 59 (2013), 1, 127-140.; Kumar, S.; Bala, K., Generalized growth of monogenic Taylor series of finite convergence radius, Ann. Univ. Ferrara Sez. VII Sci. Mat., 59, 1, 127-140 (2013) · Zbl 1300.30091
[13] S. Kumar and G. S. Srivastava, Maximum term and lower order of entire functions of several complex variables, Bull. Math. Anal. Appl. 3 (2011), 1, 156-164.; Kumar, S.; Srivastava, G. S., Maximum term and lower order of entire functions of several complex variables, Bull. Math. Anal. Appl., 3, 1, 156-164 (2011) · Zbl 1314.32003
[14] S. Kumar and G. S. Srivastava, On the maximum term and lower order of entire monogenic functions, Transylv. J. Math. Mech. 6 (2014), 1, 29-38.; Kumar, S.; Srivastava, G. S., On the maximum term and lower order of entire monogenic functions, Transylv. J. Math. Mech., 6, 1, 29-38 (2014) · Zbl 1314.30108
[15] M. N. Seremeta, On the connection between the growth of the maximum modulus of an entire function and the moduli of the coefficients of its power series expansion, Amer. Math. Soc. Transl. Ser. 2 88 (1970), 291-301.; Seremeta, M. N., On the connection between the growth of the maximum modulus of an entire function and the moduli of the coefficients of its power series expansion, Amer. Math. Soc. Transl. Ser. 2, 88, 291-301 (1970) · Zbl 0223.30026
[16] G. S. Srivastava and S. Kumar, On the generalized order and generalized type of entire monogenic functions, Demonstr. Math. 46 (2013), 4, 663-677.; Srivastava, G. S.; Kumar, S., On the generalized order and generalized type of entire monogenic functions, Demonstr. Math., 46, 4, 663-677 (2013) · Zbl 1290.30062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.