×

Fractional parts of Dedekind sums in function fields. (English) Zbl 1365.11043

The paper under review considers Dedekind sums in function fields, and shows some of the properties of the classical Dedekind sums also hold.
Let \({\mathbb F}_q\) be the finite field with \(q\) elements, \(A={\mathbb F}_q[T]\) with \(T\) an indeterminate and \(K={\mathbb F}_q(T)\). Also let \(K_{\infty}\) be the completion of \(K\) at \(\infty=(1/T)\) and \(C_{\infty}\) be the completion of an algebraic closure of \(K_{\infty}\).
For a rank \(r\) \(A\)-lattice \(\Lambda\), i.e., a finitely generated \(A\)-submodule \(\Lambda\) of rank \(r\) in \(C_{\infty}\) that is discrete in the topology of \(C_{\infty}\), there exist a Drinfeld \(A\)-module \(\phi^{\Lambda}\) of rank \(r\) over \(C_{\infty}\) and a surjective analytic function \(e_{\Lambda}\) \(:C_{\infty}\rightarrow C_{\infty}\) such that \[ e_{\Lambda}(az)=\phi_a^{\Lambda}(e_{\Lambda}(z))\;\;\text{for all}\;\; a\in A\; \] with some other properties.
The Dedekind sum associated with \(\Lambda\) is defined for \(a,\,c\in A\setminus \{0\}\) with \((a,c)=1\) by \[ s_{\Lambda}(a,c)=\frac{1}{c}\sum_{0\neq \lambda\in \Lambda/c\Lambda}e_{\Lambda} \left(\frac{\lambda}{c}\right)^{-1}e_{\Lambda}\left(\frac{a\lambda}{c}\right)^{-1}\;. \] This is an analogue of the classical Dedekind sum, and the reciprocity law has been obtained for more general sums in [A. Bayad and the author, Acta Arith. 152, No. 1, 71–80 (2012; Zbl 1301.11047)].
For a rank 1 \(A\)-lattice \(L\) which corresponds to the Carlitz module and for \(q=3\) or 2, the normalized Dedekind sum is defined as \[ {\mathcal S}(a,c)=\begin{cases}(T^3-T)s_{L}(a,c)\qquad &\text{if}\;\; q=3\,,\\ (T^4+T^2)s_{L}(a,c)\quad &\text{if}\;\;q=2\;. \end{cases} \] In this paper, the sums \({\mathcal S}(a,c)\) are investigated, and there are three main results:
(i)
Fractional parts of the \({\mathcal S}(a,c)\) are determined (Theorem 3.1). Also it is shown that any element of \(K\) can be a fractional part of \({\mathcal S}(a,c)\) for some \(a,\,c\in A\setminus\{0\}\) (Theorem 3.2);
(ii)
The Rademacher function \(\Phi\,:\mathrm{SL}_2(A)\rightarrow A\) is defined by using (i), which is an analogue of the Rademacher function coming from the Dedekind \(\eta\)-function, and Theorem 4.2 states that \(\Phi\) is a group homomorphism;
(iii)
The three term relation for \({\mathcal S}(a,c)\) is obtained (Theorem 4.7), which is proved by using \(\Phi\).
Reviewer: Kaori Ota (Tokyo)

MSC:

11F20 Dedekind eta function, Dedekind sums
11R58 Arithmetic theory of algebraic function fields
11G09 Drinfel’d modules; higher-dimensional motives, etc.

Citations:

Zbl 1301.11047
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bayad, A., Hamahata, Y.: Higher dimensional Dedekind sums in function fields. Acta Arithmetica 152, 71-80 (2012) · Zbl 1301.11047 · doi:10.4064/aa152-1-6
[2] Dedekind, R.: Erläuterungen zu den Fragmenten xxviii. In: Collected Works of Bernhard Riemann, pp. 466-478. Dover Publ., New York (1953) · Zbl 0809.11027
[3] Carlitz, L.: On certain functions connected with polynomials in a Galois field. Duke Math. J. 1, 137-168 (1935) · Zbl 0012.04904 · doi:10.1215/S0012-7094-35-00114-4
[4] Dieter, U.: Beziehungen zwischen Dedekindschen Summen. Abh. Math. Sem. Univ. Hamburg 21, 109-125 (1957) · Zbl 0078.07002
[5] Freitag, E.: Siegelsche Modulfunktionen, Springer (1983) · Zbl 0498.10016
[6] Girstmair, K.: A criterion for the equality of Dedekind sums mod \[\mathbb{Z}\] Z. Int. J. Number Theory 10, 565-568 (2014) · Zbl 1286.11057 · doi:10.1142/S179304211350108X
[7] Girstmair, K.: On the fractional parts of Dedekind sums. Int J. Num Theory 11, 29-38 (2015) · Zbl 1310.11049 · doi:10.1142/S1793042115500013
[8] Goss, D.: Basic structures of function field arithmetic, Springer (1998) · Zbl 0892.11021
[9] Hamahata, Y.: Denominators of Dedekind sums in function fields. Int J. Num Theory 9, 1423-1430 (2013) · Zbl 1318.11058 · doi:10.1142/S1793042113500358
[10] Hamahata, Y.: Continued fractions and Dedekind sums for function fields. In: Number Theory and Related Fields. In Memory of Alf van der Poorten, pp. 187-197, Springer (2013) · Zbl 1328.11045
[11] Hamahata, Y.: Values of Dedekind sums for function fields. Functiones et Approximatio Commentarii Mathematici 52, 29-35 (2015) · Zbl 1381.11032 · doi:10.7169/facm/2015.52.1.2
[12] Hickerson, D.: Continued fractions and density results for Dedekind sums. J. Reine Angew. Math. 290, 113-116 (1977) · Zbl 0341.10012
[13] Kirby, R., Melvin, P.: Dedekind sums, \[ \mu\] μ-invariants and the signature cocycle. Math. Ann. 299, 231-267 (1994) · Zbl 0809.11027 · doi:10.1007/BF01459782
[14] Lang, S.: Introduction to modular forms, Springer (1976) · Zbl 0344.10011
[15] Rademacher, H.: Zur Theorie der Dedekindschen Summen. Math. Z. 63, 445-463 (1956) · Zbl 0071.04201 · doi:10.1007/BF01187951
[16] Rademacher, H., Grosswald, E.: Dedekind sums. The mathematical association of America, Washington, D.C. (1972) · Zbl 0251.10020
[17] Rosen, M.: Number theory in function fields, Springer (2002) · Zbl 1043.11079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.