Foghem, Guy Stability of complement value problems for \(p\)-Lévy operators. (English) Zbl 07951782 NoDEA, Nonlinear Differ. Equ. Appl. 32, No. 1, Paper No. 1, 106 p. (2025). MSC: 35D30 35J20 34B15 35J60 35J66 35B35 46E35 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Saracco, Giorgio; Stefani, Giorgio On the \(N\)-Cheeger problem for component-wise increasing norms. (English. French summary) Zbl 07899475 J. Math. Pures Appl. (9) 189, Article ID 103593, 35 p. (2024). Reviewer: Debabrata Karmakar (Bangalore) MSC: 49Q20 35P30 49Q10 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Xiong, Chawen; Chen, Chunfang; Chen, Jianhua; Sun, Jijiang Existence and asymptotical behavior of ground state solutions for fractional Schrödinger-Kirchhoff type equations. (English) Zbl 07884574 Fixed Point Theory 25, No. 1, 399-418 (2024). MSC: 35R11 35J60 35A15 35J35 47H10 × Cite Format Result Cite Review PDF Full Text: DOI
Yuan, Shuai; Rădulescu, Vicenţiu D.; Tang, Xianhua; Zhang, Limin Concentrating solutions for singularly perturbed fractional \((N/s)\)-Laplacian equations with nonlocal reaction. (English) Zbl 1539.35008 Forum Math. 36, No. 3, 783-810 (2024). MSC: 35B25 35A15 35B38 35J61 35R11 × Cite Format Result Cite Review PDF Full Text: DOI
Wu, Zijian; Chen, Haibo Multiplicity of solutions for a singular problem involving the fractional \(p\)-Laplacian in the whole space. (English) Zbl 1537.35401 Math. Nachr. 297, No. 4, 1483-1500 (2024). MSC: 35R11 35J92 × Cite Format Result Cite Review PDF Full Text: DOI
Ghosh, Sekhar; Kumar, Vishvesh; Ruzhansky, Michael Compact embeddings, eigenvalue problems, and subelliptic Brezis-Nirenberg equations involving singularity on stratified Lie groups. (English) Zbl 1540.35426 Math. Ann. 388, No. 4, 4201-4249 (2024). Reviewer: Vladimir Bobkov (Ufa) MSC: 35R03 35B50 35H20 35J75 35P30 35R11 22E30 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Azroul, Elhoussine; Benkirane, Abdelmoujib; Srati, Mohammed Ekeland’s variational principle for a nonlocal \(p\)-Kirchhoff type eigenvalue problem. (English) Zbl 1536.35348 Rend. Circ. Mat. Palermo (2) 73, No. 3, 1241-1254 (2024). MSC: 35R11 35P30 35J20 35J25 35J92 × Cite Format Result Cite Review PDF Full Text: DOI
Cheng, Kun; Wang, Li Existence of least energy sign-changing solution for a class of fractional \(p \& q\)-Laplacian problems with potentials vanishing at infinity. (English) Zbl 1534.35213 Complex Var. Elliptic Equ. 69, No. 3, 425-448 (2024). MSC: 35J92 35R11 35A01 × Cite Format Result Cite Review PDF Full Text: DOI
Biagi, Stefano; Mugnai, Dimitri; Vecchi, Eugenio A Brezis-Oswald approach for mixed local and nonlocal operators. (English) Zbl 1533.35355 Commun. Contemp. Math. 26, No. 2, Article ID 2250057, 28 p. (2024). MSC: 35R11 35B50 35J25 35J92 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Djitte, Sidy Moctar; Moustapha, Mouhamed; Weth, Tobias A generalized fractional Pohozaev identity and applications. (English) Zbl 1530.35342 Adv. Calc. Var. 17, No. 1, 237-253 (2024). MSC: 35R11 35J25 35J61 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Chang, Xiaojun; Sato, Yohei; Zhang, Chengxiang Multi-peak solutions of a class of fractional \(p\)-Laplacian equations. (English) Zbl 1531.35350 J. Geom. Anal. 34, No. 1, Paper No. 29, 36 p. (2024). MSC: 35R11 35A15 35B25 35J61 47G20 × Cite Format Result Cite Review PDF Full Text: DOI
Wu, Zijian; Chen, Haibo Super-critical problems involving the fractional \(p\)-Laplacian. (English) Zbl 07920411 J. Appl. Anal. Comput. 13, No. 4, 2065-2073 (2023). MSC: 35J60 35J66 × Cite Format Result Cite Review PDF Full Text: DOI
Biagi, Stefano; Dipierro, Serena; Valdinoci, Enrico; Vecchi, Eugenio A Hong-Krahn-Szegö inequality for mixed local and nonlocal operators. (English) Zbl 07817649 Math. Eng. (Springfield) 5, No. 1, Paper No. 14, 25 p. (2023). Reviewer: Ky Ho (Ho Chi Minh City) MSC: 35P30 35J25 35J92 35R11 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Abid, Djamel; Akrout, Kamel; Ghanmi, Abdeljabbar The multiplicity of solutions for a critical problem involving the fracional \(p\)-Laplacian operator. (English) Zbl 07805673 Bol. Soc. Parana. Mat. (3) 41, Paper No. 115, 11 p. (2023). MSC: 35P30 35J35 35J60 35J92 × Cite Format Result Cite Review PDF Full Text: DOI
Wang, Linlin; Xing, Yuming; Zhang, Binlin Existence and bifurcation of positive solutions for fractional \(p\)-Kirchhoff problems. (English) Zbl 1530.35354 Math. Methods Appl. Sci. 46, No. 2, 2413-2432 (2023). MSC: 35R11 35B32 35J25 35J92 45G05 47G20 × Cite Format Result Cite Review PDF Full Text: DOI
Hynd, Ryan; Kawohl, Bernd; Lindqvist, Peter On the uniqueness of eigenfunctions for the vectorial \(p\)-Laplacian. (English) Zbl 1533.35226 Arch. Math. 121, No. 5-6, 745-755 (2023). Reviewer: Vladimir Bobkov (Ufa) MSC: 35P30 35J25 35J92 47J30 35A15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Byun, Sun-Sig; Kim, Hyojin; Song, Kyeong Nonlocal Harnack inequality for fractional elliptic equations with Orlicz growth. (English) Zbl 1528.35224 Bull. Lond. Math. Soc. 55, No. 5, 2382-2399 (2023). MSC: 35R11 35A23 35B65 35D30 47G20 × Cite Format Result Cite Review PDF Full Text: DOI
Railo, Jesse; Zimmermann, Philipp Fractional Calderón problems and Poincaré inequalities on unbounded domains. (English) Zbl 1526.35323 J. Spectr. Theory 13, No. 1, 63-131 (2023). MSC: 35R30 26A33 35J25 35R11 42B37 46F12 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Fang, Yuzhou; Zhang, Chao Harnack inequality for the nonlocal equations with general growth. (English) Zbl 1523.35281 Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 5, 1479-1502 (2023). Reviewer: Abimbola Abolarinwa (Lagos) MSC: 35R11 35B45 35B65 35D30 47G20 46E30 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Gabrovšek, Boštjan; Bisci, Giovanni Molica; Repovš, Dušan D. On nonlocal Dirichlet problems with oscillating term. (English) Zbl 1520.47113 Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1401-1413 (2023). MSC: 47J30 35R11 35S15 35A15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Asso, Oumarou; Cuesta, Mabel; Têlé Doumatè, Jonas; Leadi, Liamidi Principal eigenvalues for the fractional \(p\)-Laplacian with unbounded sign-changing weights. (English) Zbl 1519.35182 Electron. J. Differ. Equ. 2023, Paper No. 38, 29 p. (2023). MSC: 35J92 35R11 35J70 35P30 35B65 35A01 × Cite Format Result Cite Review PDF Full Text: Link
Appolloni, Luigi; Fiscella, Alessio; Secchi, Simone A perturbed fractional \(p\)-Kirchhoff problem with critical nonlinearity. (English) Zbl 1528.35187 Asymptotic Anal. 133, No. 1-2, 159-183 (2023). MSC: 35Q74 74K05 74H45 26A33 35R11 35B33 35B35 35J20 35R09 35A01 × Cite Format Result Cite Review PDF Full Text: DOI
Saifia, Ouarda; Vélin, Jean On a fractional \(p\)-Laplacian equation with critical fractional Sobolev exponent. (English) Zbl 1518.35415 Mediterr. J. Math. 20, No. 4, Paper No. 221, 23 p. (2023). MSC: 35J92 35R11 35B33 35A01 × Cite Format Result Cite Review PDF Full Text: DOI
Iannizzotto, Antonio Monotonicity of eigenvalues of the fractional \(p\)-Laplacian with singular weights. (English) Zbl 1517.35146 Topol. Methods Nonlinear Anal. 61, No. 1, 423-443 (2023). Reviewer: Qin Dongdong (Changsha) MSC: 35P30 35J25 35J92 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Garain, P.; Ukhlov, A. Mixed local and nonlocal Dirichlet \((p, q)\)-eigenvalue problem. (English. Russian original) Zbl 1514.35234 J. Math. Sci., New York 270, No. 6, 782-792 (2023); translation from Probl. Mat. Anal. 124, 43-52 (2023). MSC: 35J92 35P30 35A01 35B65 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Byun, Sun-Sig; Song, Kyeong Mixed local and nonlocal equations with measure data. (English) Zbl 1509.31022 Calc. Var. Partial Differ. Equ. 62, No. 1, Paper No. 14, 35 p. (2023). Reviewer: Marius Ghergu (Dublin) MSC: 31C45 35A01 35B65 35R06 × Cite Format Result Cite Review PDF Full Text: DOI
Wu, Zijian; Chen, Haibo An existence result for super-critical problems involving the fractional \(p\)-Laplacian in \(\mathbb{R}^N\). (English) Zbl 1498.35599 Appl. Math. Lett. 135, Article ID 108422, 8 p. (2023). MSC: 35R11 35A15 35J92 × Cite Format Result Cite Review PDF Full Text: DOI
Kumar, Uttam; Tiwari, Sweta Multiple sign-changing solutions of nonlocal critical exponent problem in symmetric domains. (English) Zbl 1498.35259 Mediterr. J. Math. 19, No. 4, Paper No. 189, 29 p. (2022). MSC: 35J61 35R11 35A01 × Cite Format Result Cite Review PDF Full Text: DOI
Marcial, Marcos R.; Miyagaki, Olimpio H.; Pereira, Gilberto A. Topological structure of the solution set for a fractional \(p\)-Laplacian problem with singular nonlinearity. (English) Zbl 1496.35012 Electron. J. Differ. Equ. 2022, Paper No. 60, 19 p. (2022). MSC: 35A16 35B65 35J25 35J75 35J92 35P30 35R11 × Cite Format Result Cite Review PDF Full Text: Link
Garain, Prashanta; Ukhlov, Alexander Mixed local and nonlocal Sobolev inequalities with extremal and associated quasilinear singular elliptic problems. (English) Zbl 1495.35010 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 223, Article ID 113022, 35 p. (2022). MSC: 35A23 35J75 35J92 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Buccheri, S.; da Silva, J. V.; de Miranda, L. H. A system of local/nonlocal \(p\)-Laplacians: the eigenvalue problem and its asymptotic limit as \(p\rightarrow \infty\). (English) Zbl 1507.35094 Asymptotic Anal. 128, No. 2, 149-181 (2022). Reviewer: Peter Lindqvist (Trondheim) MSC: 35J92 35J47 35J99 49R99 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Salort, Ariel; Vivas, Hernán Fractional eigenvalues in Orlicz spaces with no \(\Delta_2\) condition. (English) Zbl 1537.35267 J. Differ. Equations 327, 166-188 (2022). MSC: 35P30 35J25 35J61 35R11 46E30 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Miyagaki, Olímpio H.; Moreira, Sandra I.; Vieira, Rônei S. Schrödinger equations involving fractional \(p\)-Laplacian with supercritical exponent. (English) Zbl 1489.35114 Complex Var. Elliptic Equ. 67, No. 5, 1273-1286 (2022). MSC: 35J62 35R11 35A01 35A15 × Cite Format Result Cite Review PDF Full Text: DOI
Li, Na; He, Xiao-ming Positive solutions for a class of fractional \(p\)-Laplacian equation with critical Sobolev exponent and decaying potentials. (English) Zbl 1489.35149 Acta Math. Appl. Sin., Engl. Ser. 38, No. 2, 463-483 (2022). MSC: 35J92 35R11 35A01 35A15 × Cite Format Result Cite Review PDF Full Text: DOI
Mugnai, Dimitri; Perera, Kanishka; Lippi, Edoardo Proietti A priori estimates for the fractional \(p\)-Laplacian with nonlocal Neumann boundary conditions and applications. (English) Zbl 1481.35384 Commun. Pure Appl. Anal. 21, No. 1, 275-292 (2022). MSC: 35R11 35J25 35J92 58E05 35A15 × Cite Format Result Cite Review PDF Full Text: DOI
Chen, Hua; Chen, Hong-Ge Estimates the upper bounds of Dirichlet eigenvalues for fractional Laplacian. (English) Zbl 1480.35304 Discrete Contin. Dyn. Syst. 42, No. 1, 301-317 (2022). MSC: 35P15 35J25 35R11 58C40 × Cite Format Result Cite Review PDF Full Text: DOI
Zhi, Zhen; Yan, Lijun; Yang, Zuodong Existence and multiplicity of solutions for a fractional \(p\)-Laplacian equation with perturbation. (English) Zbl 1504.35631 J. Inequal. Appl. 2021, Paper No. 97, 13 p. (2021). MSC: 35R11 35J60 35J92 35P30 35A15 × Cite Format Result Cite Review PDF Full Text: DOI
Dhanya, R.; Tiwari, Sweta A multiparameter fractional Laplace problem with semipositone nonlinearity. (English) Zbl 1480.35390 Commun. Pure Appl. Anal. 20, No. 12, 4043-4061 (2021). MSC: 35R11 35A15 35B33 35J20 35J25 35J61 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Zhang, Jinguo; Yang, Dengyun Fractional \(p\)-sub-Laplacian operator problem with concave-convex nonlinearities on homogeneous groups. (English) Zbl 1489.43009 Electron. Res. Arch. 29, No. 5, 3243-3260 (2021). MSC: 43A80 35R03 22E30 35H20 × Cite Format Result Cite Review PDF Full Text: DOI
Achour, Hanaâ; Bensid, Sabri On a fractional \(p\)-Laplacian problem with discontinuous nonlinearities. (English) Zbl 1477.35294 Mediterr. J. Math. 18, No. 6, Paper No. 241, 17 p. (2021). MSC: 35R11 35A15 35B38 35J25 35J61 35J92 × Cite Format Result Cite Review PDF Full Text: DOI
Bellido, José C.; Ortega, Alejandro Spectral stability for the peridynamic fractional \(p\)-Laplacian. (English) Zbl 1476.35295 Appl. Math. Optim. 84, Suppl. 1, S253-S276 (2021). MSC: 35R11 35P30 35J25 35J92 49J45 49J35 45G05 47G20 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Zhang, Chunyan; Zhang, Jihui Multiple solutions for the fractional \(p\)-Laplacian equation with Hardy-Sobolev exponents. (English) Zbl 1473.35642 Rocky Mt. J. Math. 51, No. 1, 363-374 (2021). Reviewer: Youssef Jabri (Oujda) MSC: 35R11 58E05 58E30 65Nxx 35J25 35J92 35J20 × Cite Format Result Cite Review PDF Full Text: DOI
Azroul, Elhoussine; Benkirane, Abdelmoujib; Srati, Mohammed Eigenvalue problem associated with nonhomogeneous integro-differential operators. (English) Zbl 1470.35248 J. Elliptic Parabol. Equ. 7, No. 1, 47-64 (2021). MSC: 35P30 35R11 35J25 35J61 46E30 58E05 × Cite Format Result Cite Review PDF Full Text: DOI
Saoudi, Kamel; Panda, Akasmika; Choudhuri, Debajyoti A singular elliptic problem involving fractional \(p\)-Laplacian and a discontinuous critical nonlinearity. (English) Zbl 1472.35172 J. Math. Phys. 62, No. 7, Article ID 071505, 15 p. (2021). MSC: 35J60 35R11 35A01 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Cui, Na; Sun, Hong-Rui Fractional \(p\)-Laplacian problem with indefinite weight in \(\mathbb{R}^N\): eigenvalues and existence. (English) Zbl 1472.35202 Math. Methods Appl. Sci. 44, No. 3, 2585-2599 (2021). MSC: 35J92 35R11 35P30 × Cite Format Result Cite Review PDF Full Text: DOI
Biswas, Reshmi; Tiwari, Sweta Variable order nonlocal Choquard problem with variable exponents. (English) Zbl 1466.35153 Complex Var. Elliptic Equ. 66, No. 5, 853-875 (2021). MSC: 35J60 35R11 35A01 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Ambrosio, Vincenzo; Isernia, Teresa Multiplicity of positive solutions for a fractional \(p\& q\)-Laplacian problem in \(\mathbb{R}^N\). (English) Zbl 1471.35293 J. Math. Anal. Appl. 501, No. 1, Article ID 124487, 31 p. (2021). Reviewer: Xiaoming He (Beijing) MSC: 35R11 47G20 35A15 58E05 35J92 35B09 × Cite Format Result Cite Review PDF Full Text: DOI
Frassu, Silvia; Iannizzotto, Antonio Extremal constant sign solutions and nodal solutions for the fractional \(p\)-Laplacian. (English) Zbl 1466.35223 J. Math. Anal. Appl. 501, No. 1, Article ID 124205, 22 p. (2021). MSC: 35J92 35R11 35J25 35A01 35A15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Bonder, Julián Fernández; Silva, Analía; Spedaletti, Juan F. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. (English) Zbl 1465.35326 Discrete Contin. Dyn. Syst. 41, No. 5, 2125-2140 (2021). MSC: 35P30 35B40 35J92 49R05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Arora, Rakesh; Giacomoni, Jacques; Warnault, Guillaume Regularity results for a class of nonlinear fractional Laplacian and singular problems. (English) Zbl 1466.35151 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 3, Paper No. 30, 35 p. (2021). MSC: 35J60 35R11 35J75 35A01 35A02 35B65 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Ambrosio, Vincenzo; Isernia, Teresa; Radulescu, Vicenţiu D. Concentration of positive solutions for a class of fractional \(p\)-Kirchhoff type equations. (English) Zbl 07342500 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 2, 601-651 (2021). MSC: 47G20 35R11 35A15 35B33 55M30 × Cite Format Result Cite Review PDF Full Text: DOI
Gao, Fengshuang; Guo, Yuxia Existence and nonexistence results for critical growth fractional elliptic systems. (English) Zbl 1465.35266 SN Partial Differ. Equ. Appl. 2, No. 1, Paper No. 8, 12 p. (2021). MSC: 35J99 35R11 35B33 35A01 × Cite Format Result Cite Review PDF Full Text: DOI
Chen, Wenjing; Gui, Yuyan Existence and multiplicity of solutions for fractional Laplacian system. (English) Zbl 1465.35257 Appl. Anal. 100, No. 6, 1327-1350 (2021). MSC: 35J92 35R11 35A01 35A15 × Cite Format Result Cite Review PDF Full Text: DOI
Giacomoni, Jacques; Gouasmia, Abdelhamid; Mokrane, Abdelhafid Existence and global behavior of weak solutions to a doubly nonlinear evolution fractional \(p\)-Laplacian equation. (English) Zbl 1461.35212 Electron. J. Differ. Equ. 2021, Paper No. 09, 37 p. (2021). MSC: 35R11 35B40 35D30 35K59 35K65 × Cite Format Result Cite Review PDF Full Text: Link
Boumazourh, Athmane; Srati, Mohammed Leray-Schauder’s solution for a nonlocal problem in a fractional Orlicz-Sobolev space. (English) Zbl 07836849 Moroccan J. Pure Appl. Anal. 6, No. 1, 42-52 (2020). MSC: 35R11 35J20 35J60 58E05 × Cite Format Result Cite Review PDF Full Text: DOI
Shi, Shaoguang; Zhang, Lei Dual characterization of fractional capacity via solution of fractional \(p\)-Laplace equation. (English) Zbl 1527.35153 Math. Nachr. 293, No. 11, 2233-2247 (2020). MSC: 35J92 35R11 × Cite Format Result Cite Review PDF Full Text: DOI
Parini, E.; Salort, A. Compactness and dichotomy in nonlocal shape optimization. (English) Zbl 1531.35363 Math. Nachr. 293, No. 11, 2208-2232 (2020). Reviewer: Simon Larson (Pasadena) MSC: 35R11 45G05 49Q10 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Zhi, Zhen; Yang, Zuodong On a fractional \(p-q\) Laplacian equation with critical nonlinearity. (English) Zbl 1503.35280 J. Inequal. Appl. 2020, Paper No. 183, 13 p. (2020). MSC: 35R11 35A15 26A33 × Cite Format Result Cite Review PDF Full Text: DOI
Bucur, Claudia; Dipierro, Serena; Lombardini, Luca; Valdinoci, Enrico Minimisers of a fractional seminorm and nonlocal minimal surfaces. (English) Zbl 1458.35447 Interfaces Free Bound. 22, No. 4, 465-504 (2020). MSC: 35R11 26A33 53A10 49Q05 47J05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Cheng, Yi; Ge, Bin; Agarwal, Ravi P. Variable-order fractional Sobolev spaces and nonlinear elliptic equations with variable exponents. (English) Zbl 1462.35433 J. Math. Phys. 61, No. 7, 071507, 12 p. (2020). Reviewer: Ahmed Youssfi (Fès) MSC: 35R11 35J61 × Cite Format Result Cite Review PDF Full Text: DOI
Abatangelo, Laura; Felli, Veronica; Noris, Benedetta On simple eigenvalues of the fractional Laplacian under removal of small fractional capacity sets. (English) Zbl 1456.31007 Commun. Contemp. Math. 22, No. 8, Article ID 1950071, 32 p. (2020). Reviewer: Dian K. Palagachev (Bari) MSC: 31C15 35P20 35R11 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Ambrosio, Vincenzo Fractional \(p \& q\) Laplacian problems in \(\mathbb{R}^N\) with critical growth. (English) Zbl 1446.35245 Z. Anal. Anwend. 39, No. 3, 289-314 (2020). MSC: 35R11 35A15 58E05 35B33 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Azroul, Elhoussine; Benkirane, Abdelmoujib; Srati, Mohammed Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces. (English) Zbl 1445.35296 Adv. Oper. Theory 5, No. 4, 1350-1375 (2020). MSC: 35R11 46E30 58E05 35J60 35J15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Iannizzotto, Antonio; Mosconi, Sunra J. N.; Squassina, Marco Fine boundary regularity for the degenerate fractional \(p\)-Laplacian. (English) Zbl 1445.35101 J. Funct. Anal. 279, No. 8, Article ID 108659, 53 p. (2020). MSC: 35B65 35J67 35R11 47G20 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Lu, Guozhen; Shen, Yansheng Existence of solutions to fractional \(p\)-Laplacian systems with homogeneous nonlinearities of critical Sobolev growth. (English) Zbl 1445.35306 Adv. Nonlinear Stud. 20, No. 3, 579-597 (2020). MSC: 35R11 35B33 35J50 35J57 39B72 45G15 × Cite Format Result Cite Review PDF Full Text: DOI
Liu, Senli; Chen, Haibo; Yang, Jie; Su, Yu Existence and nonexistence of solutions for a class of Kirchhoff type equation involving fractional \(p\)-Laplacian. (English) Zbl 1445.35171 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 3, Paper No. 161, 28 p. (2020). MSC: 35J62 35R11 × Cite Format Result Cite Review PDF Full Text: DOI
Bonaldo, L. M. M.; Hurtado, E. J.; Miyagaki, O. H. A class of elliptic equations involving nonlocal integrodifferential operators with sign-changing weight functions. (English) Zbl 1467.35162 J. Math. Phys. 61, No. 5, 051503, 26 p. (2020). Reviewer: Yang Yang (Wuxi) MSC: 35J67 35R11 35A01 35A15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Assunção, Ronaldo B.; Silva, Jeferson C.; Miyagaki, Olímpio H. A fractional \(p\)-Laplacian problem with multiple critical Hardy-Sobolev nonlinearities. (English) Zbl 1442.35162 Milan J. Math. 88, No. 1, 65-97 (2020). MSC: 35J92 35A15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Hurtado, Elard J. Non-local diffusion equations involving the fractional \(p(\cdot)\)-Laplacian. (English) Zbl 1473.35350 J. Dyn. Differ. Equations 32, No. 2, 557-587 (2020). Reviewer: Anouar Bahrouni (Monastir) MSC: 35K92 35R11 35B40 35K57 35K20 35B41 × Cite Format Result Cite Review PDF Full Text: DOI
Isernia, Teresa Fractional \(p\&q\)-Laplacian problems with potentials vanishing at infinity. (English) Zbl 1437.35691 Opusc. Math. 40, No. 1, 93-110 (2020). Reviewer: Giovany Malcher Figueiredo (Brasília) MSC: 35R11 35A15 35J60 45G05 × Cite Format Result Cite Review PDF Full Text: DOI
Del Pezzo, Leandro M.; Quaas, Alexander Spectrum of the fractional \(p\)-Laplacian in \(\mathbb{R}^N\) and decay estimate for positive solutions of a Schrödinger equation. (English) Zbl 1439.35525 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 193, Article ID 111479, 24 p. (2020). MSC: 35R11 35B40 35P05 46E35 47A10 35J92 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Barrios, Begoña; Montoro, Luigi; Peral, Ireneo; Soria, Fernando Neumann conditions for the higher order \(s\)-fractional Laplacian \(( - \varDelta)^s u\) with \(s > 1\). (English) Zbl 1439.35520 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 193, Article ID 111368, 34 p. (2020). MSC: 35R11 35G10 60G22 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Pei, Ruichang; Zhang, Ying; Zhang, Jihui Ground state solutions for fractional \(p\)-Kirchhoff equation with subcritical and critical exponential growth. (English) Zbl 1432.35227 Bull. Malays. Math. Sci. Soc. (2) 43, No. 1, 355-377 (2020). MSC: 35R11 35B05 35J60 35A15 × Cite Format Result Cite Review PDF Full Text: DOI
Ambrosio, Vincenzo; Figueiredo, Giovany M.; Isernia, Teresa Existence and concentration of positive solutions for \(p\)-fractional Schrödinger equations. (English) Zbl 1431.35222 Ann. Mat. Pura Appl. (4) 199, No. 1, 317-344 (2020). MSC: 35R11 35J60 35A15 58E05 × Cite Format Result Cite Review PDF Full Text: DOI
Mugnai, Dimitri; Pinamonti, Andrea; Vecchi, Eugenio Towards a Brezis-Oswald-type result for fractional problems with Robin boundary conditions. (English) Zbl 1430.35258 Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 43, 25 p. (2020). MSC: 35R11 35J60 35P30 × Cite Format Result Cite Review PDF Full Text: DOI
Correa, Ernesto; de Pablo, Arturo Remarks on a nonlinear nonlocal operator in Orlicz spaces. (English) Zbl 1426.45005 Adv. Nonlinear Anal. 9, 305-326 (2020). MSC: 45P05 46E35 45G10 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Tian, Yujuan Some results on the eigenvalue problem for a fractional elliptic equation. (English) Zbl 1513.35411 Bound. Value Probl. 2019, Paper No. 13, 11 p. (2019). MSC: 35P15 35R11 35J20 × Cite Format Result Cite Review PDF Full Text: DOI
Ambrosio, Vincenzo On the multiplicity and concentration of positive solutions for a \(p\)-fractional Choquard equation in \(\mathbb{R}^N\). (English) Zbl 1443.35163 Comput. Math. Appl. 78, No. 8, 2593-2617 (2019). MSC: 35R11 35A35 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Pezzo, Leandro M. Del; Ferreira, Raúl; Rossi, Julio D. Eigenvalues for a combination between local and nonlocal \(p\)-Laplacians. (English) Zbl 1439.35545 Fract. Calc. Appl. Anal. 22, No. 5, 1414-1436 (2019). MSC: 35R11 35J92 35P30 47G20 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Saoudi, Kamel; Ghosh, Sekhar; Choudhuri, Debajyoti Multiplicity and Hölder regularity of solutions for a nonlocal elliptic PDE involving singularity. (English) Zbl 1427.35063 J. Math. Phys. 60, No. 10, 101509, 28 p. (2019). MSC: 35J60 35J40 35D30 35A20 35A15 35A01 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Goyal, Sarika A note on the eigenvalues of \(p\)-fractional Hardy-Sobolev operator with indefinite weight. (English) Zbl 1430.35181 Math. Nachr. 292, No. 10, 2189-2202 (2019). Reviewer: Vladimir Bobkov (Plzeň) MSC: 35P30 35R11 35A15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Mugnai, Dimitri; Proietti Lippi, Edoardo Neumann fractional \(p\)-Laplacian: eigenvalues and existence results. (English) Zbl 1425.35219 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 455-474 (2019). MSC: 35R11 35J20 35K59 35A15 47J30 35S15 47G10 45G05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Duarte, Ronaldo C.; Souto, Marco A. S. Nonlocal Schrödinger equations for integro-differential operators with measurable kernels. (English) Zbl 1433.35092 Topol. Methods Nonlinear Anal. 54, No. 1, 383-406 (2019). MSC: 35J60 35J10 × Cite Format Result Cite Review PDF Full Text: DOI Euclid
Zhang, Youpei; Tang, Xianhua; Zhang, Jian Existence and multiplicity of solutions for Kirchhoff type equations involving fractional \(p\)-Laplacian without compact condition. (English) Zbl 1427.35065 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 4, 3147-3167 (2019). MSC: 35J60 35R11 35A01 35A15 × Cite Format Result Cite Review PDF Full Text: DOI
Ambrosio, Vincenzo; Isernia, Teresa On the multiplicity and concentration for \(p\)-fractional Schrödinger equations. (English) Zbl 1466.35353 Appl. Math. Lett. 95, 13-22 (2019). MSC: 35R11 35B33 35J92 × Cite Format Result Cite Review PDF Full Text: DOI
Goel, Divya; Sreenadh, K. On the second eigenvalue of combination between local and nonlocal \(p\)-Laplacian. (English) Zbl 1425.35131 Proc. Am. Math. Soc. 147, No. 10, 4315-4327 (2019). Reviewer: Stepan Agop Tersian (Rousse) MSC: 35P30 49Q10 47J10 35P15 35R11 35B40 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Chen, Lijuan; Chen, Caisheng; Yang, Hongwei; Song, Hongxue Infinite radial solutions for the fractional Kirchhoff equation. (English) Zbl 1418.35357 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2309-2318 (2019). MSC: 35R11 35A15 35J60 × Cite Format Result Cite Review PDF Full Text: DOI
Ge, Bin; Sun, Liang-Liang; Cui, Ying-Xin; Ferrara, Massimiliano; Zhao, Ting-Ting Infinitely many solutions for a class of elliptic problems involving the fractional Laplacian. (English) Zbl 1418.35284 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 657-673 (2019). MSC: 35P15 35P30 35R11 × Cite Format Result Cite Review PDF Full Text: DOI
Zhang, Youpei; Tang, Xianhua; Zhang, Jian Existence of infinitely many solutions for fractional \(p\)-Laplacian Schrödinger-Kirchhoff type equations with sign-changing potential. (English) Zbl 1421.35181 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 569-586 (2019). MSC: 35J92 35R11 × Cite Format Result Cite Review PDF Full Text: DOI
Pucci, Patrizia (ed.); Rădulescu, Vicenţiu D. (ed.) Editorial. Progress in nonlinear Kirchhoff problems. (English) Zbl 1476.00078 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 186, 1-5 (2019). MSC: 00B15 35-06 × Cite Format Result Cite Review PDF Full Text: DOI
Kaufmann, Uriel; Rossi, Julio D.; Terra, Joana The \(\infty \)-eigenvalue problem with a sign-changing weight. (English) Zbl 1417.35078 NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 2, Paper No. 14, 20 p. (2019). MSC: 35P15 35P30 35J60 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Giacomoni, Jacques; Mukherjee, Tuhina; Sreenadh, Konijeti Existence of three positive solutions for a nonlocal singular Dirichlet boundary problem. (English) Zbl 1416.35294 Adv. Nonlinear Stud. 19, No. 2, 333-352 (2019). MSC: 35R11 35R09 35A15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Mukherjee, Tuhina; Sreenadh, Konijeti On Dirichlet problem for fractional \(p\)-Laplacian with singular non-linearity. (English) Zbl 1418.35365 Adv. Nonlinear Anal. 8, 52-72 (2019). MSC: 35R11 35R09 35A15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Alves, Claudianor O.; Ambrosio, Vincenzo; Isernia, Teresa Existence, multiplicity and concentration for a class of fractional \( p \& q \) Laplacian problems in \( \mathbb{R} ^{N} \). (English) Zbl 1412.35364 Commun. Pure Appl. Anal. 18, No. 4, 2009-2045 (2019). MSC: 35R11 35A15 47G20 58E05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Kouhestani, Najmeh; Mahyar, Hakimeh; Moameni, Abbas Multiplicity results for a non-local problem with concave and convex nonlinearities. (English) Zbl 1418.35154 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 182, 263-279 (2019). MSC: 35J60 35J67 × Cite Format Result Cite Review PDF Full Text: DOI
da Silva, João Vitor; Rossi, Julio D.; Salort, Ariel M. Maximal solutions for the \(\infty\)-eigenvalue problem. (English) Zbl 1414.35077 Adv. Calc. Var. 12, No. 2, 181-191 (2019). MSC: 35J60 35J70 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link
Fall, Mouhamed Moustapha Regularity estimates for nonlocal Schrödinger equations. (English) Zbl 1407.35209 Discrete Contin. Dyn. Syst. 39, No. 3, 1405-1456 (2019). MSC: 35R11 42B37 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Adimurthi; Giacomoni, Jacques; Santra, Sanjiban Positive solutions to a fractional equation with singular nonlinearity. (English) Zbl 1513.35508 J. Differ. Equations 265, No. 4, 1191-1226 (2018). MSC: 35R11 35B09 35B65 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Wang, Yuling; Yang, Yang Bifurcation results for the critical Choquard problem involving fractional \(p\)-Laplacian operator. (English) Zbl 1499.35691 Bound. Value Probl. 2018, Paper No. 132, 11 p. (2018). MSC: 35R11 35J60 35A15 35P30 35B33 × Cite Format Result Cite Review PDF Full Text: DOI
Goyal, Sarika On the eigenvalues and Fučik spectrum of \(p\)-fractional Hardy-Sobolev operator with weight function. (English) Zbl 1465.35011 Appl. Anal. 97, No. 4, 633-658 (2018). Reviewer: Petr Tomiczek (Plzeň) MSC: 35A15 35B33 35H30 35P30 35R11 × Cite Format Result Cite Review PDF Full Text: DOI