Stepanov, S. E.; Mikeš, J. What is the Bochner technique and where is it applied. (English) Zbl 07587469 Lobachevskii J. Math. 43, No. 3, 709-719 (2022). MSC: 53C20 58J60 PDF BibTeX XML Cite \textit{S. E. Stepanov} and \textit{J. Mikeš}, Lobachevskii J. Math. 43, No. 3, 709--719 (2022; Zbl 07587469) Full Text: DOI OpenURL
Stepanov, Sergey; Mikeš, Josef Application of the Hopf maximum principle to the theory of geodesic mappings. (English) Zbl 1499.53188 Kragujevac J. Math. 45, No. 5, 781-786 (2021). MSC: 53C20 53B20 53C21 53C24 PDF BibTeX XML Cite \textit{S. Stepanov} and \textit{J. Mikeš}, Kragujevac J. Math. 45, No. 5, 781--786 (2021; Zbl 1499.53188) Full Text: DOI Link OpenURL
Liu, Lixin; Yang, Wen Bi-geodesic mappings between pairs of pants. (English) Zbl 1484.51007 Ann. Fenn. Math. 46, No. 2, 713-725 (2021). Reviewer: Charalampos Charitos (Athína) MSC: 51M09 51M10 57M50 53C22 PDF BibTeX XML Cite \textit{L. Liu} and \textit{W. Yang}, Ann. Fenn. Math. 46, No. 2, 713--725 (2021; Zbl 1484.51007) Full Text: DOI OpenURL
Mikeš, Josef; Rýparová, Lenka Rotary mappings of spaces with affine connection. (English) Zbl 1499.53079 Filomat 33, No. 4, 1147-1152 (2019). MSC: 53B20 53B30 53A05 53B50 PDF BibTeX XML Cite \textit{J. Mikeš} and \textit{L. Rýparová}, Filomat 33, No. 4, 1147--1152 (2019; Zbl 1499.53079) Full Text: DOI OpenURL
Vesić, Nenad O.; Zlatanović, Milan Lj.; Velimirović, Ana M. Projective invariants for equitorsion geodesic mappings of semi-symmetric affine connection spaces. (English) Zbl 1408.53017 J. Math. Anal. Appl. 472, No. 2, 1571-1580 (2019). MSC: 53B05 53B20 PDF BibTeX XML Cite \textit{N. O. Vesić} et al., J. Math. Anal. Appl. 472, No. 2, 1571--1580 (2019; Zbl 1408.53017) Full Text: DOI OpenURL
Han, Yanling; Fu, Fengyun; Zhao, Peibiao A class of non-holonomic projective connections on sub-Riemannian manifolds. (English) Zbl 1488.53129 Filomat 31, No. 5, 1295-1303 (2017). MSC: 53C20 53B10 53C40 PDF BibTeX XML Cite \textit{Y. Han} et al., Filomat 31, No. 5, 1295--1303 (2017; Zbl 1488.53129) Full Text: DOI OpenURL
Petrović, Miloš Z.; Stanković, Mića S. Special almost geodesic mappings of the first type of non-symmetric affine connection spaces. (English) Zbl 1377.53019 Bull. Malays. Math. Sci. Soc. (2) 40, No. 3, 1353-1362 (2017). Reviewer: Miroslaw Doupovec (Brno) MSC: 53B05 53B20 53C15 53B10 PDF BibTeX XML Cite \textit{M. Z. Petrović} and \textit{M. S. Stanković}, Bull. Malays. Math. Sci. Soc. (2) 40, No. 3, 1353--1362 (2017; Zbl 1377.53019) Full Text: DOI OpenURL
Mikeš, Josef; Berezovski, V. E.; Stepanova, E.; Chudá, H. Geodesic mappings and their generalizations. (English. Russian original) Zbl 1432.53019 J. Math. Sci., New York 217, No. 5, 607-623 (2016); translation from Sovrem. Mat. Prilozh. 96 (2015). MSC: 53B10 PDF BibTeX XML Cite \textit{J. Mikeš} et al., J. Math. Sci., New York 217, No. 5, 607--623 (2016; Zbl 1432.53019); translation from Sovrem. Mat. Prilozh. 96 (2015) Full Text: DOI OpenURL
Stanković, Mića S.; Zlatanović, Milan L.; Vesić, Nenad O. Basic equations of \(G\)-almost geodesic mappings of the second type, which have the property of reciprocity. (English) Zbl 1363.53013 Czech. Math. J. 65, No. 3, 787-799 (2015). Reviewer: Iulia Hirică (Bucharest) MSC: 53B05 53B20 53C15 PDF BibTeX XML Cite \textit{M. S. Stanković} et al., Czech. Math. J. 65, No. 3, 787--799 (2015; Zbl 1363.53013) Full Text: DOI Link OpenURL
Stanković, Mića S. Special equitorsion almost geodesic mappings of the third type of non-symmetric affine connection spaces. (English) Zbl 1335.53018 Appl. Math. Comput. 244, 695-701 (2014). MSC: 53B05 PDF BibTeX XML Cite \textit{M. S. Stanković}, Appl. Math. Comput. 244, 695--701 (2014; Zbl 1335.53018) Full Text: DOI OpenURL