×

On sign preservation for clotheslines, curtain rods, elastic membranes and thin plates. (English) Zbl 1358.35025

This is a well-written survey concerning positive solutions to boundary value problems for second and fourth order elliptic differential equations. Let \(\Omega \subset \mathbb R^n\) be a bounded smooth domain and \(f\) a given positive function in \(\Omega\). One of the various problems can be stated for a function \(u\) satisfying equation \(\Delta^2u +\lambda u=f\) in \(\Omega\) and the boundary conditions \(u=0\) and \(-\Delta u= -(1-\sigma) \kappa\; \frac{\partial u}{\partial \nu}\) on \(\partial \Omega\) where \(\frac{\partial}{\partial \nu}\) denotes the outward normal derivative and \(\kappa\) the signed curvature of the boundary, positive on convex boundary sections and negative on concave parts; the constant \(\sigma \in (-1,1)\). The main result concerns estimations of \(\lambda\) for which positive solutions exist. The Krein-Rutman theorem devoted to positive operators is used in the study. Special attention is payed to the one-dimensional case. The case of corner points on \(\partial \Omega\) is discussed in Sobolev’s space.

MSC:

35J40 Boundary value problems for higher-order elliptic equations
35B09 Positive solutions to PDEs
35J25 Boundary value problems for second-order elliptic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adams, R.A., Fournier, J.: Sobolev Spaces, 2nd edn. Academic Press, San Diego (2003) · Zbl 1098.46001
[2] Amann, H.: Fixed point equations and nonlinear eigenvalue problem in ordered Banach spaces. SIAM Rev. 18, 620-709 (1976) · Zbl 0345.47044 · doi:10.1137/1018114
[3] Babuška, I.: Stabilität des Definitionsgebietes mit Rücksicht auf grundlegende Probleme der Theorie der partiellen Differentialgleichungen auch im Zusammenhang mit der Elastizitätstheorie, I, II. Czechoslov. Math. J. 11(86), 76-105 (1961), 165-203 · Zbl 0126.11401
[4] Babuška, I., Pitkäranta, J.: The plate paradox for hard and soft simple support. SIAM J. Math. Anal. 21, 551-576 (1990) · Zbl 0704.73052 · doi:10.1137/0521030
[5] Berggren, E.G., Nissen, A., Paulsson, B.S.: Track deflection and stiffness measurements from a track recording car. Proc. Inst. Mech. Eng., Part F: J. Rail Rapid Transit 228, 570-580 (2014) · doi:10.1177/0954409714529267
[6] Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Computer Science and Applied Mathematics. Academic Press, New York/London (1979) · Zbl 0484.15016
[7] Beygmohammadi, M., Sweers, G.: Hopf’s boundary point lemma, the Krein-Rutman theorem and a special domain. Positivity 18, 81-94 (2014) · Zbl 1298.35047 · doi:10.1007/s11117-013-0232-x
[8] Blaauwendraad, J.: Plates and FEM, Surprises and Pitfalls. Solid Mechanics and Its Applications, vol. 171. Springer, Berlin (2010) · Zbl 1422.74001 · doi:10.1007/978-90-481-3596-7
[9] Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2(4), 556-581 (1980) · Zbl 0445.35023 · doi:10.1002/mma.1670020416
[10] Boggio, T.: Sulle funzioni di green d’ordine m. Rend. Circ. Mat. Palermo 20, 97-135 (1905) · JFM 36.0827.01 · doi:10.1007/BF03014033
[11] Calvert, B.: On T-accretive operators. Ann. Math. 94, 291-314 (1972) · Zbl 0276.47053
[12] Ciarlet, P.G., Glowinski, R.: Dual iterative techniques for solving a finite element approximation of the biharmonic equation. Comput. Methods Appl. Mech. Eng. 5, 277-295 (1975) · Zbl 0305.65068 · doi:10.1016/0045-7825(75)90002-X
[13] Ciarlet, P. G.; Raviart, P.-A., A mixed finite element method for the biharmonic equation, Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974, New York · Zbl 0337.65058 · doi:10.1016/B978-0-12-208350-1.50009-1
[14] Coffman, C.V.: On the structure of solutions Δ2u=λu \(\Delta^2u=\lambda u\) which satisfy the clamped plate conditions on a right angle. SIAM J. Math. Anal. 13, 746-757 (1982) · Zbl 0498.73010 · doi:10.1137/0513051
[15] Coffman, C.V., Duffin, R.J.: On the structure of biharmonic functions satisfying the clamped plate conditions on a right angle. Adv. Appl. Math. 1, 373-389 (1980) · Zbl 0452.35002 · doi:10.1016/0196-8858(80)90018-4
[16] Coffman, C. V.; Duffin, R. J.; Shaffer, D. H., The fundamental mode of vibration of a clamped annular plate is not of one sign, Proc. Conf. in honor of R.J. Duffin, Pittsburgh, Pa., 1978, New York/London/Toronto · Zbl 0475.73049
[17] Coffman, C.V., Grover, C.L.: Obtuse cones in Hilbert spaces and applications to partial differential equations. J. Funct. Anal. 35, 369-396 (1980) · Zbl 0443.46008 · doi:10.1016/0022-1236(80)90088-9
[18] Cranston, M., Fabes, E., Zhao, Z.: Conditional gauge and potential theory for the Schrödinger operator. Trans. Am. Math. Soc. 307, 171-194 (1988) · Zbl 0652.60076
[19] Dahan-Dalmédico, A.: Mécanique et théorie des surfaces: les travaux de Sophie Germain. Hist. Math. 14, 347-365 (1987) · Zbl 0631.01013 · doi:10.1016/0315-0860(87)90066-8
[20] Dall’Acqua, A., Meister, Ch., Sweers, G.: Separating positivity and regularity for fourth order Dirichlet problems in 2d-domains. Analysis 25, 205-261 (2005) · Zbl 1330.35118
[21] Dall’Acqua, A., Sweers, G.: The clamped plate equation on the Limaçon. Ann. Mat. Pura Appl. (4) 184, 361-374 (2005) · Zbl 1223.35145 · doi:10.1007/s10231-004-0121-9
[22] Davini, C.: Γ \(\varGamma \)-Convergence of external approximations in boundary value problems involving the bi-Laplacian. J. Comput. Appl. Math. 140, 185-208 (2002) · Zbl 0998.65111 · doi:10.1016/S0377-0427(01)00525-8
[23] Davini, C., Gaussian curvature and Babuška’s paradox in the theory of plates, 67-87 (2003), Milan · doi:10.1007/978-88-470-2231-7_6
[24] Davini, C.: private communication
[25] Davini, C., Pitacco, I.: Relaxed notions of curvature and a lumped strain method for elastic plates. SIAM J. Numer. Anal. 35, 677-691 (1998) · Zbl 0928.74099 · doi:10.1137/S0036142995296102
[26] Davini, C., Pitacco, I.: An unconstrained mixed method for the biharmonic problem. SIAM J. Numer. Anal. 38, 820-836 (2000) · Zbl 0982.65124 · doi:10.1137/S0036142999359773
[27] De Coster, C., Nicaise, S., Sweers, G.: Solving the biharmonic Dirichlet problem on domains with corners. Math. Nachr. 288, 854-871 (2015) · Zbl 1325.74090 · doi:10.1002/mana.201400022
[28] Duffin, R.J.: On a question of Hadamard concerning super-biharmonic functions. J. Math. Phys. 27, 253-258 (1949) · Zbl 0033.06402 · doi:10.1002/sapm1948271253
[29] Duffin, R.J., Shaffer, D.H.: On the modes of vibration of a ring-shaped plate. Bull. Am. Math. Soc. 58, 652 (1952)
[30] Engliš, M., Peetre, J.: A Green’s function for the annulus. Ann. Mat. Pura Appl. (4) 171, 313-377 (1996) · Zbl 0871.35097 · doi:10.1007/BF01759391
[31] Euler, L.: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti (1744) · Zbl 0788.01072
[32] Fraser, C.G.: Mathematical technique and physical conception in Euler’s investigation of the elastica. Centaurus 34, 211-246 (1991) · Zbl 0752.01005 · doi:10.1111/j.1600-0498.1991.tb00695.x
[33] Friedrichs, K.: Die Randwert- und Eigenwertprobleme aus der Theorie der elastischen Platte. Math. Ann. 98, 205-247 (1928) · JFM 53.0469.03 · doi:10.1007/BF01451590
[34] Frobenius, G.: Über Matrizen aus nicht negativen Elementen. Sitzungsber. Preuss. Akad. Wiss., Berlin (1912), pp. 456-477 · JFM 43.0204.09
[35] Garabedian, P.R.: A partial differential equation arising in conformal mapping. Pac. J. Math. 1, 485-524 (1951) · Zbl 0045.05102 · doi:10.2140/pjm.1951.1.485
[36] Gazzola, F.: Mathematical Models for Suspension Bridges, Nonlinear Structural Instability, MS&A. Modeling, Simulation and Applications, vol. 15. Springer, Cham (2015) · Zbl 1325.00032 · doi:10.1007/978-3-319-15434-3
[37] Gazzola, F., Grunau, H.-C., Sweers, G.: Polyharmonic boundary value problems. Springer Lecture Notes Series, vol. 1991. Springer, Heidelberg (2010) · Zbl 1239.35002
[38] Gazzola, F., Sweers, G.: On positivity for the biharmonic operator under Steklov boundary conditions. Arch. Ration. Mech. Anal. 188, 399-427 (2008) · Zbl 1155.35019 · doi:10.1007/s00205-007-0090-4
[39] Germain, S.: Récherches sur la théorie des surfaces élastiques. Veuve Courcier, Paris (1821)
[40] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition · Zbl 1042.35002
[41] Grisvard, P.: Singularities in Boundary Value Problems. Recherches en Mathématiques Appliquées, vol. 22. Springer, Berlin/Heidelberg/New York (1992) · Zbl 0766.35001
[42] Grunau, H.-C., Robert, F.: Positivity and almost positivity of biharmonic Green’s functions under Dirichlet boundary conditions. Arch. Ration. Mech. Anal. 195, 865-898 (2010) · Zbl 1200.35090 · doi:10.1007/s00205-009-0230-0
[43] Grunau, H.-C., Robert, F., Sweers, G.: Optimal estimates from below for biharmonic Green functions. Proc. Am. Math. Soc. 139, 2151-2161 (2011) · Zbl 1220.35027 · doi:10.1090/S0002-9939-2010-10740-2
[44] Grunau, H.-C., Sweers, G.: Positivity for perturbations of polyharmonic operators with Dirichlet boundary conditions in two dimensions. Math. Nachr. 179, 89-102 (1996) · Zbl 0863.35016 · doi:10.1002/mana.19961790106
[45] Grunau, H.-C., Sweers, G.: Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions. Math. Ann. 307, 589-626 (1997) · Zbl 0892.35031 · doi:10.1007/s002080050052
[46] Grunau, H.-C.; Sweers, G., The maximum principle and positive principal eigenfunctions for polyharmonic equations, 163-182 (1997), New York · Zbl 0988.35039
[47] Grunau, H.-C., Sweers, G.: Sign change for the Green function and the first eigenfunction of equations of clamped-plate type. Arch. Ration. Mech. Anal. 150, 179-190 (1999) · Zbl 0973.74044 · doi:10.1007/s002050050185
[48] Grunau, H.-C., Sweers, G.: In any dimension a “clamped plate” with a uniform weight may change sign. Nonlinear Anal. 97, 119-124 (2014) · Zbl 1285.35019 · doi:10.1016/j.na.2013.11.017
[49] Hadamard, J.: Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées. Mémoires présentés par divers savants à l’Académie des Sciences, vol. 33, pp. 1-128 (1908) · JFM 39.1022.01
[50] Hadamard, J., Sur certains cas interessants du problème biharmonique, 1297-1299 (1968), Paris · JFM 40.0844.01
[51] Jentzsch, P.: Über Integralgleichungen mit positivem Kern. J. Reine Angew. Math. 141, 235-244 (1912) · JFM 43.0429.01
[52] Kadlec, J.: The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain. Czechoslov. Math. J. 14(89), 386-393 (1964) · Zbl 0166.37703
[53] Kawohl, B., Sweers, G.: On ‘anti’-eigenvalues for elliptic systems and a question of McKenna and Walter. Indiana Univ. Math. J. 51, 1023-1040 (2002) · Zbl 1037.35047 · doi:10.1512/iumj.2002.51.2275
[54] Kondrat’ev, V.A.: Boundary problems for elliptic equations in domains with conical or angular points. Trans. Mosc. Math. Soc. 16, 227-313 (1967) · Zbl 0194.13405
[55] Kozlov, V.A., Kondrat’ev, V.A., Maz’ya, V.G.: On sign variability and the absence of “strong” zeros of solutions of elliptic equations. Izv. Akad. Nauk SSSR, Ser. Mat. 53, 328-344 (1989) (Russian). Translation in Math. USSR-Izv. 34 (1990), 337-353 · Zbl 0701.35062
[56] Kreĭn, M.G., Rutman, M.A.: Linear operators leaving invariant a cone in a Banach space. Amer. Math. Soc. Transl. no. 26, Providence (1960) · Zbl 0030.12902
[57] Love, A.E.H.: On the small free vibrations and deformations of elastic shells. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 17, 491-549 (1888) · JFM 20.1075.01 · doi:10.1098/rsta.1888.0016
[58] Lundqvist, A., Dahlberg, T.: Dynamic train/track interaction including model for track settlement evolvement. Veh. Syst. Dyn. 41(Supplement), 667-676 (2004). Proceedings 18th IAVSD Symposium at Atsugi, Japan, August 24-29, 2003
[59] Marenholtz, O.: Beam on viscoelastic foundation: an extension of Winkler’s model. Arch. Appl. Mech. 80, 93-102 (2010) · Zbl 1184.74049 · doi:10.1007/s00419-009-0364-4
[60] Maz’ya, V.G., Nazarov, S.A.: On the Sapondzhyan-Babushka paradox in problems of the theory of thin plates. Dokl. Nats. Akad. Nauk Armen. 78, 127-130 (1984) · Zbl 0579.73051
[61] Maz’ya, V.G., Nazarov, S.A.: Paradoxes of the passage to the limit in solutions of boundary value problems for the approximation of smooth domains by polygons. Izv. Akad. Nauk SSSR, Ser. Mat. 50, 1156-1177 and 1343 (1986). Russian. Translation in: Math. USSR-Izv. 29, 511-533 (1987) · Zbl 0635.73062
[62] McKenna, P.J., Walter, W.: Nonlinear oscillations in a suspension bridge. Arch. Ration. Mech. Anal. 98, 167-177 (1987) · Zbl 0676.35003 · doi:10.1007/BF00251232
[63] Monk, P.: A mixed finite element method for the biharmonic equation. SIAM J. Numer. Anal. 24, 737-749 (1987) · Zbl 0632.65112 · doi:10.1137/0724048
[64] Nazarov, S.A., Sweers, G.: A hinged plate equation and iterated Dirichlet Laplace operator on domains with concave corners. J. Differ. Equ. 233, 151-180 (2007) · Zbl 1108.35043 · doi:10.1016/j.jde.2006.09.018
[65] Nazarov, S.A., Sweers, G., Stylianou, A.: Paradoxes in problems on bending of polygonal plates with a hinged/supported edge. Dokl. Phys. 56, 439-443 (2011) · doi:10.1134/S1028335811080027
[66] de Pagter, B.: Irreducible compact operators. Math. Z. 192, 14-153 (1986) · Zbl 0607.47033 · doi:10.1007/BF01162028
[67] Parini, E., Stylianou, A.: On the positivity preserving property of hinged plates. SIAM J. Math. Anal. 41, 2031-2037 (2009) · Zbl 1221.35129 · doi:10.1137/090757526
[68] Perron, O.: Zur Theorie der Matrizen. Math. Ann. 64, 248-263 (1907) · JFM 38.0202.01 · doi:10.1007/BF01449896
[69] Poisson, D., Mémoire sur les surfaces élastiques, Paris
[70] Protter, M.H.: Unique continuation for elliptic equations. Trans. Am. Math. Soc. 95, 81-91 (1960) · Zbl 0094.07901 · doi:10.1090/S0002-9947-1960-0113030-3
[71] Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall, Inc., Englewood Cliffs, N.J. (1967) · Zbl 0153.13602
[72] Sapondzhyan, O.M.: Bending of a simply supported polygonal plate. Izv. Akad. Nauk. Arm. SSR 5, 9-46 (1952) · Zbl 0101.17901
[73] Schröder, J.: Operator Inequalities. Mathematics in Science and Engineering, vol. 147. Academic Press, New York/London (1980) · Zbl 0455.65039
[74] Shapiro, H.S., Tegmark, M.: An elementary proof that the biharmonic Green function of an eccentric ellipse changes sign. SIAM Rev. 36, 99-101 (1994) · Zbl 0794.35044 · doi:10.1137/1036005
[75] Stylianou, A., Sweers, G.: Comparing hinged and supported rectangular plates. C. R., Méc. 338, 489-492 (2010) · Zbl 1420.74007 · doi:10.1016/j.crme.2010.08.002
[76] Sweers, G.: A strong maximum principle for a noncooperative elliptic system. SIAM J. Math. Anal. 20, 367-371 (1989) · Zbl 0682.35016 · doi:10.1137/0520023
[77] Sweers, G.: Strong positivity in C(Ω‾)\(C(\overline{\varOmega })\) for elliptic systems. Math. Z. 209, 251-271 (1992) · Zbl 0727.35045 · doi:10.1007/BF02570833
[78] Sweers, G.: A survey on boundary conditions for the biharmonic. Complex Var. Elliptic Equ. 54, 79-93 (2009) · Zbl 1171.35034 · doi:10.1080/17476930802657640
[79] Sweers, G.: Positivity for the Navier bilaplace, an anti-eigenvalue and an expected lifetime. Discrete Contin. Dyn. Syst. 7(4), 839-855 (2014) · Zbl 1286.35098 · doi:10.3934/dcdss.2014.7.839
[80] Sweers, G.: An elementary proof that the triharmonic Green function of an eccentric ellipse changes sign. Arch. Math. 107, 59-62 (2016) · Zbl 1347.35094 · doi:10.1007/s00013-016-0909-z
[81] Ulm, M.: The interval of resolvent-positivity for the biharmonic operator. Proc. Am. Math. Soc. 127, 481-489 (1999) · Zbl 0908.34073 · doi:10.1090/S0002-9939-99-04556-6
[82] Wigley, N.M.: Development of the mapping function at a corner. Pac. J. Math. 15, 1435-1461 (1965) · Zbl 0138.06001 · doi:10.2140/pjm.1965.15.1435
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.