Wang, Huaqiao Optimal controls for the stochastic compressible Navier-Stokes equations. (English) Zbl 1479.60139 SIAM J. Control Optim. 59, No. 5, 3661-3682 (2021). Reviewer: Martin Ondreját (Praha) MSC: 60H15 76D05 93E20 49K45 60J65 35Q30 PDF BibTeX XML Cite \textit{H. Wang}, SIAM J. Control Optim. 59, No. 5, 3661--3682 (2021; Zbl 1479.60139) Full Text: DOI OpenURL
Coti Zelati, Michele; Glatt-Holtz, Nathan; Trivisa, Konstantina Invariant measures for the stochastic one-dimensional compressible Navier-Stokes equations. (English) Zbl 1469.35269 Appl. Math. Optim. 83, No. 3, 1487-1522 (2021). MSC: 35R60 35Q30 37L40 60H30 PDF BibTeX XML Cite \textit{M. Coti Zelati} et al., Appl. Math. Optim. 83, No. 3, 1487--1522 (2021; Zbl 1469.35269) Full Text: DOI arXiv OpenURL
Fan, Wai-Tong Louis; Jolly, Michael; Pakzad, Ali Three-dimensional shear driven turbulence with noise at the boundary. (English) Zbl 1475.35231 Nonlinearity 34, No. 7, 4764-4786 (2021). MSC: 35Q30 76F10 76D05 35R60 PDF BibTeX XML Cite \textit{W.-T. L. Fan} et al., Nonlinearity 34, No. 7, 4764--4786 (2021; Zbl 1475.35231) Full Text: DOI arXiv OpenURL
Qiu, Zhaoyang; Wang, Yixuan Martingale solution for stochastic active liquid crystal system. (English) Zbl 1470.35289 Discrete Contin. Dyn. Syst. 41, No. 5, 2227-2268 (2021). MSC: 35Q35 35Q30 76N10 76A15 35D30 35R60 PDF BibTeX XML Cite \textit{Z. Qiu} and \textit{Y. Wang}, Discrete Contin. Dyn. Syst. 41, No. 5, 2227--2268 (2021; Zbl 1470.35289) Full Text: DOI arXiv OpenURL
Breit, Dominic; Feireisl, Eduard; Hofmanová, Martina; Maslowski, Bohdan Stationary solutions to the compressible Navier-Stokes system driven by stochastic forces. (English) Zbl 1447.35241 Probab. Theory Relat. Fields 174, No. 3-4, 981-1032 (2019). MSC: 35Q30 35R60 76M35 76N10 60H15 60H30 PDF BibTeX XML Cite \textit{D. Breit} et al., Probab. Theory Relat. Fields 174, No. 3--4, 981--1032 (2019; Zbl 1447.35241) Full Text: DOI arXiv OpenURL
Chen, Robin Ming; Wang, Dehua; Wang, Huaqiao Martingale solutions for the three-dimensional stochastic nonhomogeneous incompressible Navier-Stokes equations driven by Lévy processes. (English) Zbl 1410.35094 J. Funct. Anal. 276, No. 7, 2007-2051 (2019). MSC: 35Q30 35D30 35R60 76D06 60J65 35B45 PDF BibTeX XML Cite \textit{R. M. Chen} et al., J. Funct. Anal. 276, No. 7, 2007--2051 (2019; Zbl 1410.35094) Full Text: DOI arXiv OpenURL
Smith, Scott A.; Trivisa, Konstantina The stochastic Navier-Stokes equations for heat-conducting, compressible fluids: global existence of weak solutions. (English) Zbl 1403.35208 J. Evol. Equ. 18, No. 2, 411-465 (2018). MSC: 35Q30 35R60 80A20 35D30 35A01 76N10 PDF BibTeX XML Cite \textit{S. A. Smith} and \textit{K. Trivisa}, J. Evol. Equ. 18, No. 2, 411--465 (2018; Zbl 1403.35208) Full Text: DOI OpenURL
Breit, Dominic; Feireisl, Eduard; Hofmanová, Martina Local strong solutions to the stochastic compressible Navier-Stokes system. (English) Zbl 1390.60226 Commun. Partial Differ. Equations 43, No. 2, 313-345 (2018). MSC: 60H15 35R60 76N10 35Q30 PDF BibTeX XML Cite \textit{D. Breit} et al., Commun. Partial Differ. Equations 43, No. 2, 313--345 (2018; Zbl 1390.60226) Full Text: DOI arXiv OpenURL
Tang, Hao On the pathwise solutions to the Camassa-Holm equation with multiplicative noise. (English) Zbl 1387.35537 SIAM J. Math. Anal. 50, No. 1, 1322-1366 (2018). MSC: 35Q53 60H15 35A01 35C07 PDF BibTeX XML Cite \textit{H. Tang}, SIAM J. Math. Anal. 50, No. 1, 1322--1366 (2018; Zbl 1387.35537) Full Text: DOI OpenURL
Shen, Tianlong; Huang, Jianhua Ergodicity of stochastic magneto-hydrodynamic equations driven by \(\alpha\)-stable noise. (English) Zbl 1367.35129 J. Math. Anal. Appl. 446, No. 1, 746-769 (2017). MSC: 35Q35 35R60 60H15 PDF BibTeX XML Cite \textit{T. Shen} and \textit{J. Huang}, J. Math. Anal. Appl. 446, No. 1, 746--769 (2017; Zbl 1367.35129) Full Text: DOI OpenURL