Sultanov, A. Ya.; Monakhova, O. A. Affine transformations in bundles. (English. Russian original) Zbl 1509.53004 J. Math. Sci., New York 245, No. 5, 601-643 (2020); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 146, 48-88 (2018). Summary: This paper is a review of results of studies of affine transformations in generalized spaces over real linear algebras over the past 15–20 years. MSC: 53-02 Research exposition (monographs, survey articles) pertaining to differential geometry 53B05 Linear and affine connections 53B15 Other connections Keywords:affine transformation; generalized space over an algebra; smooth manifold; connection; torsion × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Aminova, AV, Projectively-group properties of some Riemannian spaces, Tr. Geom. Semin. VINITI, 6, 295-316 (1974) · Zbl 0309.53046 [2] Aminova, AV, Groups of projective and affine motions in spaces of general relativity theory, Tr. Geom. Semin. VINITI, 6, 317-346 (1974) · Zbl 0305.53023 [3] Aminova, AV, Groups of almost projective motions of spaces of affine connection, Izv. Vyssh. Ucheb. Zaved. Mat., 4, 71-75 (1979) · Zbl 0414.53006 [4] Aminova, AV, Pseudo-Riemannian manifolds with common geodesics, Usp. Mat. Nauk, 48, No., 2, 290, 107-164 (1993) · Zbl 0933.53002 [5] Aminova, AV; Aminov, NA-M, Cartan projective connection spaces and group-theoretic analysis of systems of second-order ordinary differential equations, J. Math. Sci., 169, 3, 282-296 (2010) · Zbl 1225.34014 [6] Atanasiu, G.; Purcaru, M., About a class of metrical N-linear connections on the 2-tangent bundle, FILOMAT, 21, 1, 113-128 (2007) · Zbl 1143.53325 [7] Atanasiu, G., N-Linear connections and JN-linear connections on second-order tangent bundle T_2, Acta Univ. Apulensis Math. Inform., 11, 35-38 (2006) [8] N. E. Belova, “Bundles of biaxial spaces generated by the algebra of antiquaternions,” in: Motions in Generalized Space [in Russian], Penza (2000), pp. 17-30. [9] Budanov, KM; Voevodin, AV, On Frobenius Weil algebras of width 2, Differ. Geom. Mnogoobr. Figur, 37, 19-23 (2006) · Zbl 1221.13011 [10] K. M. Budanov, “Lifts of functions and vector fields to the Weil bundle over the tensor product of algebras of dual numbers,” Tr. Geom. Semin. G. F. Lapteva, 16-20 (2007). [11] G. N. Bushueva, “Weil bundles over manifolds depending on parameters,” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 24-33. [12] G. N. Bushueva, amd V. V. Shurygin, “On the higher order geometry ofWeil bundles over smooth manifolds and over parameter depended manifolds,” Lobachevskii J. Math., 18, 53-105 (2005). · Zbl 1083.58005 [13] Dȩbecki, J., Linear liftings of symmetric tensor fields of type (1, 2) toWeil bundles, Ann. Polon. Math., 92, 1, 13-27 (2007) · Zbl 1131.58004 [14] Dȩbecki, J., Linear natural liftings of forms to Weil bundles with Weil algebras \({D}_k^r \), Note Mat., 28, 2, 99-105 (2008) · Zbl 1208.58005 [15] Dȩbecki, J., Affine liftings of torsion-free connections to Weil bundles, Colloq. Math., 114, 1, 1-8 (2009) · Zbl 1166.58001 [16] J. Dȩbecki, “Linear liftings of skew symmetric tensor fields of type (1, 2) to Weil bundles,” Czech. Math. J., 60 (135), No. 4, 933-943 (2010). · Zbl 1224.58004 [17] A. I. Egorov, “Maximally mobile generalized differential-geometric spaces, I,” in: Motions in Generalized Spaces [in Russian], Penza (2000), pp. 91-100. [18] A. I. Egorov, “Riemannian spaces Vn(x) of Professor I. P. Egorov with a motion group G_r of order \(r=\frac{\left(n-1\right)\left(n-2\right)}{2}+5\left(n\ge 4\right)//\) in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 52-61. [19] A. I. Egorov, “Motions in generalized Riemannian and Finslerial spaces, III,” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 62-71. [20] A. I. Egorov, “Finslerian spaces with indefinite metric and a motion group G_r of order \(r=\frac{\left(n-1\right)\left(n-2\right)}{2}+5\left(n\ge 4\right).\) II// in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 72-74. [21] A. I. Egorov, “Local surfaces of revolution in the space as metric spaces of vector elements, I,” Tr. Geom. Semin. G. F. Lapteva, 45-50 (2004). [22] A. I. Egorov, N. S. Sinyukov, and A. Ya. Sultanov, “The scientific heritage of I. P. Egorov (July 25, 1915—October 2, 1990),” in: Itogi Nauki Tekh. Sovr. Mat. Prilozh. Temat. Obzory, 8, VINITI, Moscow (1995), pp. 5-36. · Zbl 0862.01020 [23] Egorov, IP, On the order of motion groups of spaces of affine connection, Dokl. Akad. Nauk SSSR, 61, 4, 605-608 (1948) · Zbl 0041.50604 [24] I. P. Egorov, Motions in spaces of affine connection [in Russian], Thesis, Moscow State Univ. (1955). [25] I. P. Egorov, “Motions in generalized differential-geometric spaces,” in: Itogi Nauki Tekh. Algebra. Topol. Geom. 1965, VINITI, Moscow (1967), pp. 375-428. · Zbl 0209.25201 [26] Egorov, IP, Automorphisms in generalized spaces, Itogi Nauki Tekh. Probl. Geom., 10, 147-191 (1978) · Zbl 0405.53010 [27] I. P. Egorov, Geometry [in Russian], Moscow (1979). · Zbl 0483.51001 [28] Egorov, IP, Motions and homotheties in Finsler spaces and their generalizations, Itogi Nauki Tekh. Probl. Geom., 16, 81-126 (1984) · Zbl 0576.53021 [29] L. E. Evtushik, Yu. G. Lumiste, N. M. Ostianu, and A. P. Shirokov, “Differential-geometric structures on manifolds,” Itogi Nauki Tekh. Probl. Geom., 9, VINITI, Moscow (1979). · Zbl 0455.58002 [30] Gainullin, FR; Shurygin, VV, Holomorphic tensor fields and linear connections on the second-order tangent bundles, Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 151, 4, 36-50 (2009) · Zbl 1216.53019 [31] Gezer, A.; Akbulut, K.; Salimov, AA, Infinitesimal holomorphically projective transformations on tangent bundles with respect to the synectic metric tensor, J. Geom. Topol., 9, 3, 225-237 (2009) · Zbl 1187.53023 [32] Gezer, A.; Altunbas, M., Some results on a cross-section in the tensor bundle, Hacet. J. Math. Stat., 43, 3, 391-397 (2014) · Zbl 1314.53058 [33] Gezer, A.; Altunbas, M., On the (1, 1)-tensor bundle with Cheeger-Gromoll-type metric, Proc. Indian Acad. Sci. Math. Sci., 125, 4, 569-576 (2015) · Zbl 1332.53035 [34] Gezer, A.; Salimov, AA, Diagonal lifts of tensor fields of type (1, 1) on cross-sections in tensor bundles and its applications, J. Korean Math. Soc., 45, 2, 367-376 (2008) · Zbl 1152.53018 [35] Gezer, A.; Salimov, AA, Almost complex structures on tensor bundles, Arab. J. Sci. Eng. Sec. A Sci., 33, 2, 283-296 (2008) · Zbl 1185.53030 [36] Gezer, A.; Salimov, AA, Lifts of (1, 1)-tensor fields on pure cross-sections of (p, q)-tensor bundles, J. Pure Appl. Math., 2, 2, 194-202 (2011) · Zbl 1239.53010 [37] L. S. Gorshkova, “Infinitesimal conformal transformations in Davis spaces,” in: Motions in Generalized Spaces [in Russian], Penza (2000), pp. 13-16. [38] L. S. Gorshkova, “On infinitesimal conformal transformations in metric spaces of vector and covector densities,” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 34-37. [39] L. S. Gorshkova, “On certain classes of metric spaces of vector densities that admit conformal transformations,” Tr. Geom. Semin. G. F. Lapteva, 31-33 (2004). [40] Sh. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience, New York-London (1963). · Zbl 0119.37502 [41] Kolář, I., Affine structures on Weil bundles, Nagoya Math. J., 158, 99-106 (2000) · Zbl 0961.58002 [42] I. Kolář, “Weil bundles as generalized jet spaces,” in: Handbook of Global Analysis, Elsevier, Amsterdam (2008), pp. 625-664. · Zbl 1236.58010 [43] Kolář, I., On the natural transformations of Weil bundles, Arch. Math. (Brno), 49, 5, 303-308 (2013) · Zbl 1313.58002 [44] I. Kolář, “On the geometry of Weil bundles,” Differ. Geom. Appl., 35, suppl., 136-142 (2014). · Zbl 1373.53032 [45] Kolář, I., On the geometry of vertical Weil bundles, Arch. Math. (Brno), 50, 5, 317-322 (2014) · Zbl 1340.58003 [46] I. M. Krestinina, “Extensions of tensor fields and linear connections from the base M_n to the bundle of affinors E(M_n),” in: Motions in Generalized Spaces [in Russian], Penza (1999), pp. 50-60. [47] I.M. Krestinina, “Canonical decomposition of an infinitesimal affine transformation of the bundle of affinors with the connection of horizontal lift,” in: Motions in Generalized Spaces [in Russian], Penza (1999), pp. 61-64. [48] I. M. Krestinina, “On the decomposition of an infinitesimal projective transformation of the bundle of affinors with the connection adjoint to the connection of horizontal lift,” in: Motions in Generalized Spaces [in Russian], Penza (2000), pp. 168-172. [49] Laptev, BL, Covariant differential and the theory of differential invariants in the space of tensor supporting elements, Uch. Zap. Kazan. Univ., 118, 4, 75-147 (1958) · Zbl 0118.38602 [50] Magden, A.; Salimov, AA, Horizontal lifts of tensor fields to sections of tensor bundles, Izv. Vyssh. Ucheb. Zaved. Mat., 3, 77-80 (2001) · Zbl 1007.53014 [51] N. I. Manina, “On horizontal lifts of vector fields to the secondd-order tangent bundle,” in: Motions in Generalized Spaces [in Russian], Penza (2005), pp. 65-70. [52] Manina, NI, On the decomposition of an infinitesimal affine transformation of the second-order tangent bundle, Izv. Penz. Gos. Pedagog. Inst., 22, 58-63 (2010) [53] N. I. Manina, “Infinitesimal affine transformations of the second-order tangent bundle with the connection of horizontal lift over a non-projectively flat space,” in: Proc. VII Int. Symp. “Fundamental and Applied Scientific Problems” [in Russian], Moscow (2012), pp. 23-31. [54] Manina, NI; Sultanov, AY, Infinitesimal affine transformations of the second-order tangent bundle with the connection of horizontal lift, Izv. Vyssh. Ucheb. Zaved. Mat., 9, 62-69 (2011) [55] Miron, R.; Atanasiu, G., Differential geometry of the k-osculator bundle, Rev. Roum. Math. Pures Appl., 41, 3-4, 205-236 (1996) · Zbl 0860.53049 [56] Kam-Ping, M., Lifts of vector fields to tensor bundles, Geom. Dedic., 8, 1, 61-67 (1979) · Zbl 0402.53042 [57] O. A. Monakhova, “Vertical lifts of tensor fields of the type (1, 1),” in: Motions in Generalized Spaces [in Russian], Penza (2000), pp. 173-177. [58] O. A. Monakhova, “Horizontal lift of a connection to the bundle of twice covariant tensors,” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 168-172. [59] Monakhova, OA, On adapted frames and some lifts in the bundle of twice covariant tensors, Differ. Geom. Mnogoobr. Figur, 33, 72-74 (2002) · Zbl 1066.53042 [60] Monakhova, OA, On some properties of the horizontal lift of a connection on the bundle of twice covariant tensors, Differ. Geom. Mnogoobr. Figur, 34, 95-98 (2003) · Zbl 1158.53317 [61] O. A. Monakhova, “Natural extension of diffeomorphisms of the base to the bundle of twice covariant tensors,” Tr. Geom. Semin. G. F. Lapteva, 80-83 (2004). [62] O. A. Monakhova, “Recurrence condition for the curvature tensor of the horizontal lift of a connection on the bundle of twice covariant tensor,” in: Motions in Generalized Spaces [in Russian], Penza (2005), pp. 78-84. [63] Monakhova, OA, Horizontal lift of a linear connection to the bundle of twice covariant tensors, Differ. Geom. Mnogoobr. Figur, 36, 88-92 (2005) · Zbl 1384.53025 [64] Monakhova, OA, Infinitesimal affine transformation of the space \(( {T}_2^0 \) (M_n),∇^H) over themaximally mobile non-projectively flat space (M_n,∇), Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 147, 132-137 (2005) · Zbl 1208.53015 [65] Monakhova, OA, Decomposition of an infinitesimal affine transformation of the bundle \(( {T}_2^0 \) (M_n),∇^H), Differ. Geom. Mnogoobr. Figur, 37, 108-112 (2006) · Zbl 1270.53028 [66] O. A. Monakhova, “On the dimension of the Lie algebra of infinitesimal affine transformations of the space \(( {T}_2^0 \) (M_n),∇^H),” Tr. Geom. Semin. G. F. Lapteva, 68-73 (2007). [67] Monakhova, OA, Structure group on the bundle of twice covariant tensors, Izv. Penz. Gos. Pedagog. Inst., 22, 64-66 (2010) [68] Monakhova, OA, On the structure group on the bundle of twice covariant tensors, Differ. Geom. Mnogoobr. Figur, 41, 98-102 (2010) · Zbl 1211.15033 [69] M. V. Morgun, “Some properties of the direct product of linear connections,” in: Motions in Generalized Spaces [in Russian], Penza (2005), pp. 84-90. [70] Morgun, MV, On dimensions of Lie algebras of infinitesimal affine transformations of the direct product of affinely connected spaces, Differ. Geom. Mnogoobr. Figur, 37, 113-118 (2006) · Zbl 1270.53029 [71] M. V. Morgun, “On Lie algebras of affine vector fields on the direct product of projectively- Euclidean and flat affinely connected spaces,” Tr. Geom. Semin. G. F. Lapteva, 74-79 (2007). [72] Morgun, MV, On the direct product of nonflat projectively-Euclidean affinely connected spaces, Differ. Geom. Mnogoobr. Figur, 38, 103-106 (2007) · Zbl 1270.53044 [73] Morimoto, A., Prolongation of connections to tangent bundles of near points, J. Differ. Geom., 11, 4, 479-498 (1976) · Zbl 0358.53013 [74] N. D. Nikitin, “Infinitesimal motions in spaces of nonlinear connection,” in: Motions in Generalized Spaces [in Russian], Penza (1999), pp. 93-101. [75] N. D. Nikitin, “Infinitesimal projectable transformations of the tangent bundle with an affine connection,” in: Motions in Generalized Spaces [in Russian], Penza (2000), pp. 101-105. [76] N. D. Nikitin, “On the Lie algebra of the transformation group with one-dimensional orbits,” Tr. Geom. Semin. G. F. Lapteva, 87-90 (2004). [77] Nikitina, YV; Sultanov, AY, Weil bundle over the tensor product of two algebras of dual numbers, Izv. Vyssh. Ucheb. Zaved. Povolzh. Region. Fiz.-Mat. Nauki, 4, 28, 17-28 (2013) [78] Opokina, NA, Tangent and tensor bundles of the type (2, 0) over a Lie group, Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 147, 1, 138-147 (2005) · Zbl 1208.53016 [79] Opokina, NA, Left connection on the tensor bundle of the type (2, 0) over a Lie group, Izv. Vyssh. Ucheb. Zaved. Mat., 11, 77-82 (2006) [80] Opokina, NA, Left-invariant metrics on the tensor bundle of the type (2, 0) over a Lie group, Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 154, 4, 146-155 (2012) [81] N. A. Os’minina, “On the algebra of infinitesimal affine transformations of the second-order tangent bundle with the connection of total lift,” in: Motions in Generalized Spaces [in Russian], Penza (1999), pp. 102-106. [82] N. A. Os’minina, “On some lifts of the second-order tangent bundle,” in: Motions in Generalized Spaces [in Russian], Penza (1999), pp. 107-120. [83] N. A. Os’minina, “On the canonical decomposition of an arbitrary infinitesimal projective transformation of the second-order tangent bundle with the connection of total lift,” in: Motions in Generalized Spaces [in Russian], Penza (2000), pp. 179-181. [84] N. A. Os’minina, “Infinitesimal affine transformation of the second-order tangent bundle T_2(M_n) with the synectic connection ∇^* (H_1,H_2) over the projectively-Euclidean space,” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 173-176. [85] N. A. Os’minina, “On the canonical decomposition of an arbitrary infinitesimal affine transformation of the second-order tangent bundle T_2(M_n) with a synectic connection ∇^*(∇,H_1,H_2),” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 176-180. [86] N. A. Os’minina, “Infinitesimal affine transformations of the second-order tangent bundle (T_2(M_n) with a synectic connection ∇^* over a maximally mobile space,” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 181-182. [87] N. A. Os’minina, “Infinitesimal transformation of the second-order tangent bundle T_2(M_n) with the connection of the total lift ∇^C over the projectively-Euclidean space,” in: Motions in Generalized Spaces [in Russian], Penza (2005), pp. 101-105. [88] Salimov, AA, Holomorphic-projective transformations of connection on manifolds with structures determined by algebras, Tr. Geom. Semin. Kazan. Univ., 16, 91-103 (1984) · Zbl 0607.53010 [89] Salimov, AA, A new method in the theory of lifts of tensor fields to tensor bundles, Izv. Vyssh. Ucheb. Zaved. Mat., 3, 69-75 (1994) [90] Salimov, AA; Chengiz, N., Lifts of Riemannian metrics to tensor bundles, Izv. Vyssh. Ucheb. Zaved. Mat., 11, 51-59 (2003) · Zbl 1078.53511 [91] Salimov, AA; Gezer, A., On the geometry of the (1, 1)-tensor bundle with Sasaki-type metric, Chin. Ann. Math. Ser. B, 32, 3, 369-386 (2011) · Zbl 1297.53025 [92] Salimov, AA; Gezer, A.; Akbulut, K., Geodesics of Sasakian metrics on tensor bundles, Mediterr. J. Math., 6, 2, 135-147 (2009) · Zbl 1230.53041 [93] Salimov, AA; Gezer, A.; Aslanc, S., On almost complex structures in the cotangent bundle, Turk. J. Math., 35, 3, 487-492 (2011) · Zbl 1232.53030 [94] Salimov, AA; Gezer, A.; Iscan, M., On para-Kaehler-Norden structures on the tangent bundles, Ann. Pol. Math., 103, 3, 247-261 (2012) · Zbl 1246.53047 [95] Shapukov, BN, Structure of tensor bundles, Izv. Vyssh. Ucheb. Zaved. Mat., 5, 63-73 (1979) · Zbl 0423.53026 [96] Shapukov, BN, Connections of differentiable bundles, Tr. Geom. Semin. Kazan. Univ., 12, 97-111 (1980) · Zbl 0493.53025 [97] Shapukov, BN, Structure of tensor bundles, II, Izv. Vyssh. Ucheb. Zaved. Mat., 9, 56-63 (1981) · Zbl 0495.53031 [98] B. N. Shapukov, “Connections on differentiable bundles,” in: Itogi Nauki Tekh. Probl. Geom., 15, VINITI, Moscow (1983), pp. 61-93. · Zbl 0563.53023 [99] B. N. Shapukov, Structures on Fibered Manifolds and Problems of Reduction [in Russian], Thesis, Kazan (1990). [100] B. N. Shapukov, “Lie derivative on fibered manifolds,” in: Itogi Nauki Tekh. Sovr. Mat. Prilozh. Temat. Obzory, 73, VINITI, Moscow (2002), pp. 103-134. [101] A. P. Shirokov, “Structures on differentiable manifolds,” in: Itogi Nauki. Algebra. Topol. Geom. 1967, VINITI, Moscow (1969), pp. 127-188. · Zbl 0227.53029 [102] A. P. Shirokov, “Structures on differentiable manifolds,” in: Itogi Nauki. Algebra. Topol. Geom., 11, VINITI, Moscow (1974), pp. 153-208. [103] Shirokov, AP, Remark on structures in tangent bundles, Tr. Geom. Semin. VINITI, 5, 311-318 (1974) · Zbl 0309.53034 [104] A. P. Shirokov, “Geometry of tangent bundles and spaces over algebras,” in: Itogi Nauki Tekh. Probl. Geom., 12, VINITI, Moscow (1981), pp. 61-96. · Zbl 0479.53025 [105] V. V. Shurygin, “Jet bundles as manifolds over algebras,” in: Itogi Nauki Tekh. Probl. Geom., 19, VINITI. Moscow (1987), pp. 3-22. [106] Shurygin, VV, Smooth manifolds over local algebras and Weil manifolds, Itogi Nauki Tekh. Sovr. Mat. Prilozh. Temat. Obzory, 162-236 (2002), Moscow: VINITI, Moscow [107] Shurygin, VV, Some aspects of the theory of manifolds over algebras and Weil bundles, J. Math. Sci., 169, 3, 315-341 (2010) · Zbl 1226.53032 [108] Shurygin, VV Jr, Lifts of Poisson-Nijenhuis structures to Weil bundles, Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 151, 4, 203-214 (2009) · Zbl 1220.53098 [109] E. P. Shustova, “Total lifts of a connection and a metric to the tangent bundle of order k,” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 228-233. [110] Smolyakova, LB, On holonomy representations of manifolds modelled by modules over Weil algebras, Tr. Geom. Semin. Kazan. Univ., 24, 129-138 (2003) · Zbl 1413.53098 [111] Smolyakova, LB, Structure of complete rediant manifolds modelled by modules over Weil algebras, Izv. Vyssh. Ucheb. Zaved. Mat., 5, 76-83 (2004) [112] A. Ya. Sultanov, “On lifts of tensor fields from a manifold to the bundle of linear frames,” in: Motions in Generalized Spaces [in Russian], Penza (1988), pp. 53-60. · Zbl 0675.53030 [113] A. Ya. Sultanov, “Some lifts in the bundle of linear frames,” in: Motions in Generalized Spaces [in Russian], Penza (1991), pp. 150-157. [114] A. Ya. Sultanov, “Bundle of linear frames over almost complex manifolds,” Geometry of Generalized Spaces [in Russian], Penza (1992), pp. 101-105. [115] A. Ya. Sultanov, “Infinitesimal projective transformations of bundles of linear frames with the connection of total lift,” in: Proc. Int. Conf. “N. I. Lobachevsky and Modern Geometry” [in Russian], Kazan (1992), pp. 96-97. [116] Sultanov, AY, Extensions of Riemannian metrics from a differentiable manifold to its bundle of linear frames, Izv. Vyssh. Ucheb. Zaved. Mat., 6, 93-102 (1992) [117] A. Ya. Sultanov, “On Abelian subgroups of the affine group,” in: Proc. Int. Conf. on Algebra in the Memory of M. I. Kargapolov [in Russian], Krasnoyarsk (1993), pp. 323-324. [118] Sultanov, AY, Infinitesimal transformations of the bundle of linear frames with the connection of total lift, Tr. Geom. Semin. Kazan. Univ., 22, 78-88 (1994) · Zbl 0863.53015 [119] Sultanov, AY, On some geometric structures in bundles of jets of differentiable mappings, Izv. Vyssh. Ucheb. Zaved. Mat., 7, 51-64 (1995) [120] Sultanov, AY, Infinitesimal transformations of the bundle of linear frames with the connection of total lift, Izv. Vyssh. Ucheb. Zaved. Mat., 2, 53-58 (1996) [121] Sultanov, AY, Decomposition of the bundle of jets of differentiable mappings into the Whitney sum of tangent bundles, Tr. Geom. Semin. Kazan. Univ., 23, 139-148 (1997) · Zbl 1228.58002 [122] Sultanov, AY, Extensions of tensor fields and connections in Weil bundles, Izv. Vyssh. Ucheb. Zaved. Mat., 9, 64-72 (1999) [123] A. Ya. Sultanov, “On linear connections in Weil bundles,” in: Proc. Int. Conf. “Invariant Methods of Analysis on Manifolds for Structures of Geometry and Mathematical Physics” Dedicated to the 90th Anniversary of Professor G. F. Laptev [in Russian], Moscow (1999), pp. 48-60. [124] A. Ya. Sultanov, “On the maximal dimension of groups of affine transformations of Weil bundles with synectic connections,” in: Proc. Conf. “Theory of Functions, Its Applications, and Related Topics” Dedicated to the 130th Anniversary of Professor D. F. Egorov [in Russian], Kazan (1999), pp. 215-216. [125] A. Ya. Sultanov, “Infinitesimal affine transformations in first-order Weil bundles with the connection of horizontal lift,” in: Motions in Generalized Spaces [in Russian], Penza (1999), pp. 142-149. [126] A. Ya. Sultanov, “On linear connections over algebras,” in: Proc. Int. Conf. on Geometry and Analysis Dedicated to the Memory of Professor N. V. Efimov, Abrau-Dyurso, Sept. 5-11, 2000 [in Russian], Rostov-on-Don (2000), p. 68. [127] A. Ya. Sultanov, “On the maximal dimensions of intransitive motion groups of affinely connected spaces,” in: Motions in Generalized Spaces [in Russian], Penza (2000), pp. 79-80. [128] A. Ya. Sultanov, “On the decomposition of infinitesimal affine transformations of Whitney sums of tangent bundles,” in: Actual Problems im Mathematics and Mechanics. Proc. N. I. Lobachevsky Math. Center [in Russian], 5, Kazan (2000), pp. 200-201. [129] Sultanov, AY, On intransitive motion groups of affinely connected spaces, Differ. Geom. Mnogoobr. Figur, 32, 101-104 (2001) · Zbl 1054.53038 [130] A. Ya. Sultanov, “On affine transformations of Weil bundles with synectic connections,” in: Proc. 4 Int. Conf. on Geometry and Topology [in Russian], Cherkassy (2001), pp. 99-100. [131] A. Ya. Sultanov, “Differentiations in linear algebras of special type,” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 206-215. [132] Sultanov, AY, On motion groups of affinely connected spaces with torsion, Differ. Geom. Mnogoobr. Figur, 33, 100-103 (2002) · Zbl 1063.53017 [133] Sultanov, AY, Affine transformations of manifolds with linear connection and automorphisms of linear algebras, Izv. Vyssh. Ucheb. Zaved. Mat., 11, 77-81 (2003) · Zbl 1074.53009 [134] A. Ya. Sultanov, “On infinitesimal automorphisms of bundle,” in: Proc. 5 Int. Conf. on Geometry and Topolgy Dedicated to the Memory of Academician A. V. Pogorelov [in Russian], Cherkassy (2003), pp. 137-138. [135] A. Ya. Sultanov, “On the dimension of the algebra of differentiations of a unital linear algebra,” in: Proc. Int. Conf. On Geometry and Analysis [in Russian], Penza (2003), pp. 110-112. [136] A. Ya. Sultanov, “On the Whitney sum of Weil bundles,” in: Proc. Int. Conf. on Geometry and Analysis Dedicated to the Memory of Professor N. V. Efimov, Abrau-Dyurso, Sept. 5-11, 2004 [in Russian], Rostov-on-Don (2004), p. 57. [137] A. Ya. Sultanov, “On differentiations of free Weil algebras and their representations on Weil bundles,” Tr. Geom. Semin. G. F. Lapteva, 128-137 (2004). [138] Sultanov, AY, Actions of automorphism groups of Weil algebras on Weil bundles, Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 147, 1, 159-172 (2005) · Zbl 1206.58003 [139] Sultanov, AY, Horizontal lifts of linear connections on second-order Weil bundles, Differ. Geom. Mnogoobr. Figur, 36, 133-140 (2005) · Zbl 1384.58005 [140] A. Ya. Sultanov, “On differentiations of linear algebras,” in: Motions in Generalized Spaces [in Russian], Penza (2005), pp. 111-136. [141] A. Ya. Sultanov, “Holomorphic affine vector fields on Weil bundles,” Proc. Int. Conf. on Geometry and Analysis Dedicated to the Memory of Professor N. V. Efimov, Abrau-Dyurso, Sept. 5-11, 2006, Rostov-on-Don (2006), p. 90. · Zbl 1283.53017 [142] Sultanov, AY, On dimensions of Lie algebras of holomorphic affine vector fields in affinely connected spaces over algebras, Differ. Geom. Mnogoobr. Figur, 37, 164-168 (2006) · Zbl 1270.53009 [143] A. Ya. Sultanov, “On the Lie algebra of holomorphic affine vector fields on Weil bundles with connections of natural lifts,” in: Proc. Int. Conf. “Geometry on Odessa-2006” [in Russian], Odessa (2006), p. 152. · Zbl 1270.53009 [144] A. Ya. Sultanov, “On Weil algebras,” in: Proc. Int. Conf. “Modern Problems in Geometry and Mechanics of Deformable Bodies” [in Russian], Cheboksary (2006), pp. 38-39. [145] Sultanov, AY, On Weil algebras with additional conditions, Vestn. Chuvash. Pedagog. Inst., 5, 172-174 (2006) [146] Sultanov, AY, On real dimensions of Lie algebras of holomorphic affine vector fields, Izv. Vyssh. Ucheb. Zaved. Mat., 4, 54-67 (2007) · Zbl 1226.17018 [147] Sultanov, AY, On the real realization of a holomorphic linear connection over an algebra, Differ. Geom. Mnogoobr. Figur, 38, 136-139 (2007) · Zbl 1270.53041 [148] Sultanov, AY; Moshin, AY, On the Whitney sum of Weil bundles, Tr. Inst. Sistem. Anal. Ross. Akad. Nauk, 31, 1, 215-223 (2007) [149] Sultanov, AY; Mukhin, AV, Decomposition of Weil bundles into Whitney sums, Tr. Inst. Sistem. Anal. Ross. Akad. Nauk, 31, 1, 224-229 (2007) [150] A. Ya. Sultanov, “Linear connections in the module of differentiations of an algebra,” Tr. Geom. Semin. G. F. Lapteva, 78-109 (2007). [151] Sultanov, AY, On Lie algebras of holomorphic affine vector fields on Weil bundles, Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 151, 4, 171-177 (2009) · Zbl 1216.53021 [152] Sultanov, AY, Derivations of linear algebras and linear connections, J. Math. Sci., 169, 3, 362-412 (2010) · Zbl 1218.53027 [153] Sultanov, AY, On automorphism groups of special linear algebras, Izv. Penz. Gos. Pedagog. Inst., 18, 22, 70-74 (2010) [154] Sultanov, AY, On algebras of differentiations of linear algebras of maximal dimension, Izv. Penz. Gos. Pedagog. Inst., 18, 22, 75-77 (2010) [155] Sultanov, AY, On Lie algebras of holomorphic affine vector fields and holomorphic linear connections with symmetric Ricci fields, Vestn. Tatar. Gos. Guman.-Pedagog. Inst., 1, 23, 41-45 (2011) [156] A. Ya. Sultanov, “On affine differentiations in the module of differentiations of the algebra of polynomials,” in: Proc. VII Int. Symp. “Fundamental and Applied Scientific Problems” [in Russian], Vol. 1, Moscow (2012), pp. 16-22. [157] Sultanov, AY, Holomorphic affine vector fields on Weil bundles, Mat. Zametki, 91, 6, 896-899 (2012) · Zbl 1283.53017 [158] Sultanov, AY; Morgun, MV, On Lie algebras of vector fields of real realizations of holomorphic linear connection, Izv. Vyssh. Ucheb. Zaved. Mat., 4, 59-65 (2008) [159] Sultanov, AY; Sultanova, GA, Estimate of dimensions of Lie algebras of infinitesimal affine transformations of the tangent bundles T(M) with connections of total lift, Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 156, 2, 43-54 (2014) · Zbl 1353.58001 [160] Sultanov, AY; Sultanova, NS, On affine automorphisms of locally trivial bundles, Differ. Geom. Mnogoobr. Figur, 34, 136-140 (2003) · Zbl 1158.53318 [161] A. Ya. Sultanov and N. S. Sultanova, “Automorphism groups of Weil algebras and their actions on Weil bundles,” Actual Problems im Mathematics and Mechanics. Proc. N. I. Lobachevsky Math. Center [in Russian], 25, Kazan (2004), pp. 252-253. [162] Sultanova, GA, Some lifts of tensor fields of the type (1, r) from the base to the tangent bundle, Izv. Vyssh. Ucheb. Zaved. Povolzh. Region. Fiz.-Mat. Nauki, 1, 29, 54-64 (2014) [163] Sultanova, GA, On motion groups in tangent bundles with connections of total lifts over two-dimensional maximally mobile affinely connected spaces, Differ. Geom. Mnogoobr. Figur, 46, 153-161 (2015) · Zbl 1376.53037 [164] Sultanova, GA, On the estimate of dimensions of Lie algebras of infinitesimal automorphisms of tangent bundles with connections of total lifts over non-projectively-Euclidean bases, Differ. Geom. Mnogoobr. Figur, 47, 146-153 (2016) · Zbl 1397.53028 [165] Sultanova, GA, On dimensions of Lie algebras of automorphisms in tangent bundles with connections of total lifts over projectively-Euclidean bases, Dalnevost. Mat. Zh., 16, 1, 83-95 (2016) · Zbl 1375.53026 [166] N. S. Sultanova, “Infinitesimal affine transformations of cotangent bundles with connections of horizontal lifts,” in: Motions in Generalized Spaces [in Russian], Penza (1999), pp. 150-156. [167] N. S. Sultanova, “On affine transformations of cotangent bundles over maximally mobile affinely connected spaces,” in: Motions in Generalized Spaces [in Russian], Penza (2000), pp. 162-167. [168] N. S. Sultanova, “Natural extensions of diffeomorphisms from a smooth manifold to its cotangent bundle,” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 215-220. [169] Sultanova, NS, On the dimension of the total motion group of the cotangent bundle with the connection of horizontal lift, Differ. Geom. Mnogoobr. Figur, 33, 104-107 (2002) · Zbl 1063.53018 [170] Vishnevsky, VV, Manifolds over plural numbers and semi-tangent structures, Itogi Nauki Tekh. Probl. Geom., 35-75 (1988), Moscow: VINITI, Moscow [171] Vishnevsky, VV, Integrable affine structures and their plural interpretation, Itogi Nauki Tekh. Sovr. Mat. Prilozh. Temat. Obzory, 5-64 (2002), Moscow: VINITI, Moscow [172] V. V. Vishnevsky, A. P. Shirokov, and V. V. Shurygin, Spaces over Algebras [in Russian], Kazan (1984). [173] K. Yano, Tangent and Cotangent Bundles, Marcel Dekker, New York (1973). · Zbl 0262.53024 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.