×

Dynamics of the interaction of plankton and planktivorous fish with delay. (English) Zbl 1339.92099

Summary: This paper is devoted to the study of a plankton-fish ecosystem model. The model represents the interaction between phytoplankton, zooplankton, and fish with Holling II functional response consisting of carrying capacity and constant intrinsic growth rate of phytoplankton. It is observed that if the carrying capacity of phytoplankton population crosses a certain critical value, the system enters into Hopf bifurcation. We have introduced discrete time delay due to gestation in the functional response term involved with the growth equation of planktivorous fish. We have studied the effect of time delay on the stability behavior. In addition, we have obtained an estimate for the length of time delay to preserve the stability of the model system. Existence of Hopf bifurcating small amplitude periodic solutions is derived by considering time delay as a bifurcation parameter. It is observed that constant intrinsic growth rate of phytoplankton and mortality rate of planktivorous fish play an important role in changing one steady state to another steady state and oscillatory behavior of the system. Computer simulations illustrate the results.

MSC:

92D40 Ecology
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beretta, E.; Bischi, G. I.; Solimano, F., Stability in chemostat equations with delayed nutrient recycling, Journal of Mathematical Biology, 28, 99-111 (1991) · Zbl 0665.45006 · doi:10.1007/BF00171521
[2] Biktashev, V. N.; Brindley, J.; Horwood, J. W., Phytoplankton blooms and fish recruitment rate, Journal of plankton Research, 25, 21-33 (2003) · doi:10.1093/plankt/25.1.21
[3] Bischi, G. I., Effects of time lags on transient characteristics of a nutrient cycling model, Mathematical Biosciences, 109, 151-175 (1992) · Zbl 0748.92014 · doi:10.1016/0025-5564(92)90043-V
[4] Chatterjee, A.; Pal, S., Effect of dilution rate on the predictability of a realistic ecosystem model with instantaneous nutrient recycling, Journal of Biological Systems, 19, 629-650 (2011) · Zbl 1382.92256 · doi:10.1142/S021833901100410X
[5] Cushing, J. M., lntegrodifferential equations and delay models in population dynamics, 20 (1977), Berlin: Springer-Verlag, Berlin · Zbl 0363.92014 · doi:10.1007/978-3-642-93073-7
[6] Das, K.; Ray, S., Effect of delay on nutrient cycling in phytoplankton-zooplankton interactions in estuarine system, Ecological Modelling, 215, 69-76 (2008) · doi:10.1016/j.ecolmodel.2008.02.019
[7] Freedman, H. I.; Erbe, L. H.; Rao, V. S. H., Three species food chain models with mutual interference and time delays, Mathematical Biosciences, 80, 57-80 (1986) · Zbl 0592.92024 · doi:10.1016/0025-5564(86)90067-2
[8] Freedman, H. I.; Rao, V. S. H., The trade-off between mutual interference and time lags in predator-prey systems, Bulletin of Mathematical Biology, 45, 991-1004 (1983) · Zbl 0535.92024 · doi:10.1007/BF02458826
[9] Freedman, H. I.; So, J.; Waltman, P., Coexistence in a model of competition in the chemostat incorporating discrete delay, SIAM Journal on Mathematical Analysis, 49, 859-870 (1989) · Zbl 0676.92013 · doi:10.1137/0149050
[10] Gazi, N. H.; Bandyopadyay, M., Effect of time delay on a detritus-based ecosystem, International Journal of Mathematics and Mathematical Sciences, 1-28 (2006) · Zbl 1127.92042 · doi:10.1155/IJMMS/2006/25619
[11] Gazi, N. H.; Bandyopadhyay, M., Effect of time delay on a harvested predator-prey model, Journal of Applied Mathematics and Computing, 26, 263-280 (2008) · Zbl 1163.34054 · doi:10.1007/s12190-007-0015-2
[12] Gopalsamy, K., Delayed responses and stability in two-species systems, The Journal of the Australian Mathematical Society Series B Applied Mathematics, 25, 473-500 (1984) · Zbl 0552.92016 · doi:10.1017/S0334270000004227
[13] Gopalsamy, K., Stability and oscillations in delay differential equations of population dynamics, 74 (1992), Dordrecht: Kluwer, Dordrecht · Zbl 0752.34039 · doi:10.1007/978-94-015-7920-9
[14] Khare, S.; Misra, O. P.; Singh, C.; Dhar, J., Role of delay on planktonic ecosystem in the presence of a toxic producing phytoplankton, International Journal of Differential Equations (2011) · Zbl 1239.34099 · doi:10.1155/2011/603183
[15] Kuang, Y., Delay differential equations with applications in popular dynamics (1993), New York, NY: Academic Press, New York, NY · Zbl 0777.34002
[16] Liu, S.; Beretta, E.; Breda, D., Predator-prey model of Beddington-DeAngelis type with maturation and gestation delays, Nonlinear Analysis: Real World Applications, 11, 4072-4091 (2010) · Zbl 1208.34124 · doi:10.1016/j.nonrwa.2010.03.013
[17] Maity, A.; Patra, B.; Samanta, G. P., Persistence and stability in a ratio-dependent predator-prey system with delay and harvesting, Natural Resource Modeling, 20, 575-600 (2007) · Zbl 1157.92332 · doi:10.1111/j.1939-7445.2007.tb00221.x
[18] Medvinsky, A. B.; Rusakov, A. V.; Bobyrev, A. E.; Burmensky, V. A.; Kriksunov, A. E.; Nurieva, N. I.; Gonik, M. M., A conceptual mathematical model of aquatic communities in lakes Naroch and Myastro (Belarus), Biophysics, 54, 90-93 (2009) · doi:10.1134/S0006350909010151
[19] Mukhopadhyay, B.; Bhattacharyya, R., Role of gestation delay in a plankton-fish model under stochastic fluctuations, Mathematical Biosciences, 215, 26-34 (2008) · Zbl 1156.92043 · doi:10.1016/j.mbs.2008.05.007
[20] Mukhopadhyay, B.; Bhattacharyya, R., A stage-structured food chain model with stage dependent predation: Existence of codimension one and codimension two bifurcations, Nonlinear Analysis: Real World Applications, 12, 3056-3072 (2011) · Zbl 1231.34070 · doi:10.1016/j.nonrwa.2011.05.007
[21] Pal, S.; Chatterjee, A., Role of constant nutrient input and mortality rate of planktivorous fish in plankton community ecosystem with instantaneous nutrient recycling, Canadian Applied Mathematics Quarterly, 20, 179-207 (2012) · Zbl 1322.92083
[22] Rehim, M.; Imran, M., Dynamical analysis of a delay model of phytoplankton-zooplankton interaction, Applied Mathematical Modelling, 36, 638-647 (2012) · Zbl 1236.34078 · doi:10.1016/j.apm.2011.07.018
[23] Ruan, S., The effect of delays on stability and persistence in plankton models, Nonlinear Analysis, Theory, Methods and Applications, 24, 575-585 (1995) · Zbl 0830.34067 · doi:10.1016/0362-546X(95)93092-I
[24] Scheffer, M., Fish and nutrients interplay determines algel biomass: A minimal model, Oikos, 62, 271-282 (1991)
[25] Scheffer, M.; Rinaldi, S.; Kuznetsov, A. Y., Effects of fish on plankton dynamics: A theoretical analysis, Canadian Journal of Fisheries and Aquatic Sciences, 57, 1208-1219 (2000)
[26] Singh, A.; Gakkhar, S., Analysis of delayed toxin producing phytoplankton-zooplankton system, International Journal of Modeling and Optimization, 2, 677-680 (2012) · doi:10.7763/IJMO.2012.V2.208
[27] Upadhyay, R. K.; Kumari, N.; Rai, V., Wave of chaos in a diffusive system: Generating realistic patterns of patchiness in planktonfish dynamics, Chaos, Solitons and Fractals, 40, 262-276 (2009) · Zbl 1197.37121 · doi:10.1016/j.chaos.2007.07.078
[28] Yongzhen, P.; Min, G.; Changguo, L., A delay digestion process with application in a three-species ecosystem, Communications in Nonlinear Science and Numerical Simulation, 16, 4365-4378 (2011) · Zbl 1219.92066 · doi:10.1016/j.cnsns.2011.03.018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.