×

The intuitionistic triple \(\chi\) of ideal fuzzy real numbers over \(p\)-metric spaces defined by Musielak Orlicz function. (English) Zbl 1415.40003

Summary: In this article we introduce the intuitionistic sequence spaces \(\left[\chi_{f(\mu,\eta)}^{3FI}, \Vert(d(x_1), d(x_2), \dots, d(x_{n-1}))\Vert_p\right]\) and \(\left[\Lambda_{f(\mu,\eta)}^{3FI}, \Vert (d(x_1), d(x_2), \dots, d(x_{n-1})) \Vert_p \right]\) and study some basic topological and algebraic properties of these spaces. Also we investigate the relations related to these spaces and some of their properties like solidity, symmetricity, convergence free etc., and also investigate some inclusion relations related to these spaces.

MSC:

40A05 Convergence and divergence of series and sequences
40C05 Matrix methods for summability
46A45 Sequence spaces (including Köthe sequence spaces)
03E72 Theory of fuzzy sets, etc.
PDFBibTeX XMLCite
Full Text: Link

References:

[1] T. Apostol, Mathematical Analysis, Addison-Wesley, London, 1978.
[2] A. Esi, On some triple almost lacunary sequence spaces defined by Orlicz functions, Res. Rev., Discrete Math. Struct., 1(2) (2014), 16-25.
[3] A. Esi and M. Necdet Catalbas, Almost convergence of triple sequences, Glob. J. Math. Anal., 2(1) (2014), 6-10. · Zbl 1413.40010
[4] A. Esi and E. Savas, On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. Inf. Sci., 9(5) (2015), 2529-2534.
[5] A. Esi, Statistical convergence of triple sequences in topological groups, Ann. Univ. Craiova, Math. Comput. Sci. Ser., 40(1) (2013), 29-33. · Zbl 1299.40018
[6] E. Savas and A. Esi, Statistical convergence of triple sequences on probabilistic normed space , Ann. Univ. Craiova, Math. Comput. Sci. Ser., 39(2) (2012), 226-236. · Zbl 1274.40035
[7] G.H. Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19 (1917), 86-95.
[8] N. Subramanian and U.K. Misra, Characterization of gai sequences via double Orlicz space, Southeast Asian Bull. Math., 35 (2011), 687-697. · Zbl 1240.46014
[9] N. Subramanian, C. Priya and N. Saivaraju, The \(\int \chi^2I\) of real numbers over Musielak metric space, Southeast Asian Bull. Math., 39 (1) (2015), 133-148. · Zbl 1340.46014
[10] N. Subramanian, P. Anbalagan and P. Thirunavukkarasu, The Ideal Convergence of Strongly of \(\Gamma^2\) in \(p-\) Metric Spaces Defined by Modulus, Southeast Asian Bull. Math., 37 (2013), 919-930. · Zbl 1299.40003
[11] N. Subramanian, The Semi Normed space defined by Modulus function, Southeast Asian Bull. Math., 32 (2008), 1161-1166. · Zbl 1199.46018
[12] Deepmala, N.Subramanian and Vishnu Narayan Misra, Double almost \(\left(\lambda_m \mu_n\right)\) in \(\chi^2-\) Riesz space, Southeast Asian Bull. Math., 35(2016), 1-11.
[13] N. Subramanian, B.C. Tripathy and C. Murugesan, The double sequence space of \(\Gamma^2\), Fasciculi Math., 40 (2008), 91-103. · Zbl 1176.46010
[14] N. Subramanian, B.C. Tripathy and C. Murugesan, The Ces \(\acutea\) ro of double entire sequences, Int. Math. Forum, 4(2)(2009), 49-59. · Zbl 1177.46007
[15] A. Sahiner, M. Gurdal and F.K. Duden, Triple sequences and their statistical convergence, Selcuk J. Appl. Math., 8(2)(2007), 49-55. · Zbl 1152.40306
[16] N. Subramanian and A. Esi, The generalized triple difference of \(\chi^3\) sequence spaces , Glob. J. Math. Anal., 3(2) (2015), 54-60.
[17] N. Subramanian and A. Esi, The study on \(\chi^3\) sequence spaces, Songklanakarin J. Sci. Technol., communicated. · Zbl 1458.40003
[18] N. Subramanian and A. Esi, Characterization of Triple \(\chi^3\) sequence spaces , Math. Moravica, in press. · Zbl 1458.40003
[19] N. Subramanian and A. Esi, Some New Semi-Normed Triple Sequence Spaces Defined By A Sequence Of Moduli, J. Anal. Number Theory, 3(2) (2015), 79-88.
[20] T.V.G. Shri Prakash, M. Chandramouleeswaran and N. Subramanian , The Triple Almost Lacunary \(\Gamma^3\) sequence spaces defined by a modulus function, Int. J. Appl. Eng. Res., 10(80) (2015), 94-99.
[21] T.V.G. Shri Prakash, M. Chandramouleeswaran and N. Subramanian, The triple entire sequence defined by Musielak Orlicz functions over \(p-\) metric space, Asian J. Math. Comput. Res., 5(4) (2015), 196-203.
[22] T.V.G. Shri Prakash, M. Chandramouleeswaran and N. Subramanian , The Random of Lacunary statistical on \(\Gamma^3\) over metric spaces defined by Musielak Orlicz functions, Mod. Appl. Sci., 10(1) (2016), 171-183.
[23] T.V.G. Shri Prakash, M. Chandramouleeswaran and N. Subramanian, The Triple \(\Gamma^3\) of tensor products in Orlicz sequence spaces, Math. Sci. Int. Res. J., 4(2) (2015), 162-166.
[24] T.V.G. Shri Prakash, M. Chandramouleeswaran and N. Subramanian, The strongly generalized triple difference \(\Gamma^3\) sequence spaces defined by a modulus, Math. Moravica, in press. · Zbl 1464.46006
[25] T.V.G. Shri Prakash, M. Chandramouleeswaran and N. Subramanian, Lacunary Triple sequence \(\Gamma^3\) of Fibonacci numbers over probabilistic \(p-\) metric spaces, Int. Org. Sci. Res., in press.
[26] P.K. Kamthan and M. Gupta, Sequence spaces and series, Lecture notes, Pure and Applied Mathematics, 65 Marcel Dekker, Inc., New York, 1981. · Zbl 0447.46002
[27] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390. · Zbl 0227.46042
[28] H. Kizmaz, On certain sequence spaces, Canadian Math. Bull., 24(2)(1981), 169-176. · Zbl 0454.46010
[29] H. Nakano Concave modulars, J. Math. Soc. Japan, 5, (1953), 29-49. · Zbl 0050.33402
[30] P. Kostyrko, T. Salat and W.Wilczynski, \(I-\) convergence, Real Anal. Exchange, 26(2) (2000-2001), 669-686.
[31] V.N. Mishra, Some Problems on Approximations of Functions in Banach Spaces, Ph.D. Thesis (2007), Indian Institute of Technology, Roorkee 247 667, Uttarakhand, India.
[32] V.N. Mishra, L.N. Mishra, Trigonometric Approximation of Signals (Functions) in \(L_p(p \geq 1)\)-norm, \emphInt. J. Contemp. Math. Sci., 7 (19), 2012, 909-918. · Zbl 1246.94015
[33] D. Rai, N. Subramanian, V.N. Mishra, The Generalized difference of \(\int \chi^2I\) of fuzzy real numbers over \(p-\) metric spaces defined by Musielak Orlicz function, \emphNew Trends Math. Sci., 4 (3) (2016), 296-306.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.