Levchuk, D. V.; Ushakov, Yu. Yu. Euler-Hall functions on Ree groups. (English. Russian original) Zbl 1292.20037 Sib. Math. J. 54, No. 2, 256-264 (2013); translation from Sib. Mat. Zh. 54, No. 2, 336-346 (2013). For every nonabelian simple group \(G\) and for each natural \(n\geq 2\), there exists a greatest number \(d=d_n(G)\) such that the direct power \(G^d\) is generated by \(n\) elements. The authors compute the precise value of \(d_2(G)\) when \(G\) is a finite simple Ree group of type \(^2G_2\). Reviewer: Andrea Lucchini (Padova) MSC: 20F05 Generators, relations, and presentations of groups 20D06 Simple groups: alternating groups and groups of Lie type Keywords:finite simple groups; simple Ree groups; finite groups of Lie type; Euler-Hall function PDF BibTeX XML Cite \textit{D. V. Levchuk} and \textit{Yu. Yu. Ushakov}, Sib. Math. J. 54, No. 2, 256--264 (2013; Zbl 1292.20037); translation from Sib. Mat. Zh. 54, No. 2, 336--346 (2013) Full Text: DOI OpenURL References: [1] Hall P., ”The Eulerian functions of a group,” Quart. J. Math., 7, 134–151 (1936). · Zbl 0014.10402 [2] The Kourovka Notebook: Unsolved Problems in Group Theory, 15th ed., Sobolev Inst. Math., Novosibirsk (2002). · Zbl 0999.20001 [3] Erfanian A. and Wiegold J., ”A note on growth sequence for finite simple groups,” Bull. Austral. Math. Soc., 51, 495–499 (1995). · Zbl 0837.20043 [4] Erfanian A. and Rezaei R., ”On the growth sequence of PSp(2m, q),” Int. J. Algebra, 1, No. 2, 51–62 (2007). · Zbl 1157.20020 [5] Erfanian A., ”A note on growth sequences of alternating groups,” Arch. Math., 78, No. 4, 257–262 (2002). · Zbl 1045.20024 [6] Erfanian A., ”A note on growth sequences of PSL(m, q),” Southeast Asian Bull. Math., 29, No. 4, 697–713 (2005). · Zbl 1092.20028 [7] Ushakov Yu. Yu., ”Bound of F. Hall’s functions on the Lie type groups of rank 1,” Vladikavkaz. Mat. Zh., 15, No. 2, 50–56 (2012). · Zbl 1326.20014 [8] Suchkov N. M. and Prikhod’ko D. M., ”On the number of generating pairs for the groups L 2(2m) and Sz(22k+1),” Siberian Math. J., 42, No. 5, 975–980 (2001). [9] Prikhod’ko D. M., ”On the number of generating pairs for the prime finite group,” in: Abstracts: V International Conference ”Algebra and Number Theory: Contemporary Problems and Applications” [in Russian], TGPU, Tula, 2003, pp. 185–186. [10] Carter R. W., Simple Groups of Lie Type, John Wiley and Sons, London (1972). · Zbl 0248.20015 [11] Steinberg R., Lectures on Chevalley Groups, Yale University, New Haven (1968). · Zbl 1196.22001 [12] Ward H. N., ”On Ree’s series of simple groups,” Trans. Amer. Math. Soc., 121, No. 1, 62–89 (1966). · Zbl 0139.24902 [13] Janko Z. and Thompson J. C., ”On a class of finite simple groups of Ree,” J. Algebra, 4, No. 2, 274–292 (1966). · Zbl 0145.02702 [14] Levchuk V. M. and Nuzhin Ya. N., ”Structure of Ree groups,” Algebra and Logic, 24, No. 1, 16–26 (1985). · Zbl 0581.20025 [15] Kargapolov M. I. and Merzlyakov Yu. I., Fundamentals of the Theory of Groups, Springer-Verlag, New York, Heidelberg, and Berlin (1996). · Zbl 0884.20001 [16] Levchuk V. M., ”F. Hall’s functions on groups of Lie type and groups of rank 1,” Vladikavkaz. Mat. Zh., 10, No. 1, 37–39 (2008). · Zbl 1324.20006 [17] Hurrelbrink J. and Rehmann U., ”Eine endliche Presentation der Gruppe G 2(Z),” Math. Z., Bd 141,Heft 3, 243–251 (1975). · Zbl 0284.20035 [18] Kemper G., Lübeck F., and Magaard K., ”Matrix generators for the Ree groups 2 G 2(q),” Comm. Algebra, 29, No. 1, 407–413 (2001). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.