×

Exponential synthesis in the kernel of a symmetric convolution. (English. Russian original) Zbl 1388.30030

J. Math. Sci., New York 229, No. 5, 572-599 (2018); translation from Zap. Nauchn. Semin. POMI 447, 129-170 (2016).
Summary: The paper describes a certain class of homogeneous equations of convolution type in spaces of analytic functions on convex domains. We obtain sufficient conditions under which every solution of an equation from this class is approximated by its elementary solutions.

MSC:

30D15 Special classes of entire functions of one complex variable and growth estimates
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Shishkin, AB, Projective and injective descriptions in the complex domain. duality, Izv. Sarat. Univ. (N.S.), Ser. Mat., Mekh., Inform., 14, 47-65, (2014) · Zbl 1337.47008
[2] Krasichkov-Ternovskiĭ, IF, Invariant subspaces of analytic functions. II. spectral synthesis on convex domains, Mat. Sb., 88, 3-30, (1972)
[3] Myggli, H, Differentialgleichungen unendlich hoher ordnung mit constanten koeffizienten, Comment Math. Helv., 11, 151-179, (1938) · Zbl 0019.34601
[4] Schwartz, L, Théorie générale des fonctions moyenne-periodiques, Ann. Math., 48, 857-929, (1947) · Zbl 0030.15004
[5] Dickson, DG, Convolution equation and harmonic analysis in spaces of entire functions, Trans. Amer. Math. Soc., 184, 373-385, (1973) · Zbl 0246.46013
[6] Merzlyakov, SG, Invariant subspaces of a multiple differentiation operator, Mat. Zametki, 40, 635-639, (1986)
[7] Shishkin, AB, Spectral synthesis for an operator generated by multiplication by a power of the independent variable, Mat. Sb., 182, 828-848, (1991) · Zbl 0759.47021
[8] Krasichkov-Ternovskiĭ, IF, Spectral synthesis in the complex domain for a differential operator with constant coefficients. IV. synthesis, Mat. Sb., 183, 23-46, (1992) · Zbl 0772.34056
[9] Shiskin, AB, Factorization of entire symmetric functions of exponential type, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh., Inform., 16, 42-68, (2016) · Zbl 1350.30043
[10] Krasichkov-Ternovskiĭ, IF, Spectral synthesis in the complex domain for a differential operator with constant coefficients. I. the duality theorem, Mat. Sb., 182, 1559-1587, (1991) · Zbl 0752.34044
[11] Krasichkov-Ternovskiĭ, IF, Invariant subspaces of analytic functions. I. spectral synthesis on convex domains, Mat. Sb., 87, 459-489, (1972)
[12] Shishkin, AB, Spectral synthesis for systems of differential operators with constant coefficients, Mat. Sb., 194, 123-160, (2003) · Zbl 1079.47046
[13] V. V. Napalkov, Convolution Equations in Multidimensional Spaces [in Russian], Moscow (1982). · Zbl 0582.47041
[14] Krasichkov-Ternovskiĭ, IF, Spectral synthesis in the complex domain for a differential operator with constant coefficients. III. ample submodules, Mat. Sb., 183, 55-86, (1992) · Zbl 0772.34055
[15] Krasichkov-Ternovskiĭ, IF, An approximation theorem for a homogeneous vector convolution equation, Mat. Sb., 195, 37-57, (2004)
[16] A. B. Shishkin, Projective and Injective Descriptions in the Complex Domain. Spectral synthesis and Local Description of Analytic Functions [in Russian], Kub. Gos. Univ., Slavyansk-na-Kubani (2013). · Zbl 1337.47008
[17] T. A. Volkovaya and A. B. Shishkin, “Local sescription of entire functions, Issled. Mat. Anal., Vladikavkaz, 212-223 (2014). · Zbl 1332.30018
[18] Volkovaya, TA; Shishkin, AB, Local description of entire fnctions. submodules of rank 1, Vladikavkaz. Mat. Zh., 16, 14-28, (2014) · Zbl 1332.30018
[19] Volkovaya, TA, Synthesis in the polynomial kernel of two analytic functionals, Izv. Sarat. Univ. (N.S.), Ser. Mat., Mekh., Inform., 14, 251-262, (2014) · Zbl 1301.30029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.