Egorov, Aleksandr Anatol’evich Solutions of the differential inequality with a null Lagrangian: higher integrability and removability of singularities. II. (English) Zbl 1420.30006 Vladikavkaz. Mat. Zh. 16, No. 4, 41-48 (2014). Summary: The aim of this paper is to establish a result on removability of singularities for solutions of the differential inequality with a null Lagrangian. Also, we obtain integral estimates for wedge products of closed differential forms and for minors of a Jacobian matrix.For Part I, see [the author, ibid. 16, No. 3, 22–37 (2014; Zbl 1332.30038)]. MSC: 30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations 35F20 Nonlinear first-order PDEs 35A15 Variational methods applied to PDEs 35B35 Stability in context of PDEs 26B25 Convexity of real functions of several variables, generalizations Keywords:null Lagrangian; removability of singularities; integral estimates; closed differential forms; minors of Jacobian matrix Citations:Zbl 1332.30038 PDF BibTeX XML Cite \textit{A. A. Egorov}, Vladikavkaz. Mat. Zh. 16, No. 4, 41--48 (2014; Zbl 1420.30006) Full Text: MNR OpenURL References: [1] Astala K., “Area distortion of quasiconformal mappings”, Acta Math., 173:1 (1994), 37-60 · Zbl 0815.30015 [2] Astala K., Clop A., Mateu J., Orobitg J., Uriarte-Tuero I., “Distortion of Hausdorff measures and improved Painlevé removability for quasiregular mappings”, Duke Math. J., 141:3 (2008), 539-571 · Zbl 1140.30009 [3] Astala K., Iwaniec T., Martin G., Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Math. Ser., 48, Princeton Univ. Press, Princeton, 2009, xvi+677 pp. · Zbl 1182.30001 [4] Sib. Math. J., 33:1 (1992), 159-161 · Zbl 0764.30020 [5] Sib. Math. J., 34:1 (1993), 55-58 · Zbl 0834.35028 [6] Dairbekov N. S., Stability of Classes of Mappings, Beltrami Equations, and Quasiregular Mappings of Several Variables, Doctoral dissertation, Novosibirsk, 1995 (Russian) · Zbl 0856.30019 [7] Egorov A. A., Solutions of the Differential Inequality with a Null Lagrangian: Regularity and Removability of Singularities, 2010, arXiv: [8] Egorov A. A., “Solutions of the Differential Inequality with a Null Lagrangian: Higher Integrability and Removability of Singularities. I”, Vladikavkaz Math. J., 16:3 (2014), 22-37 · Zbl 1332.30038 [9] Gol’dshtein V. M., Reshetnyak Yu. G., Introduction to the Theory of Functions with Generalized Derivatives, and Quasiconformal Mappings, Nauka, M., 1983, 285 pp. (Russian) [10] Gol’dshtein V. M., Reshetnyak Yu. G., Quasiconformal Mappings and Sobolev Spaces, Math. and its Appl. Soviet Ser., 54, Kluwer Acad. Publ., Dordrecht etc., 1990, xix+371 pp. [11] Gutlyanskii V., Ryazanov V., Srebro U., Yakubov E., The Beltrami Equation. A Geometric Approach, Developments in Math., 26, Springer, Berlin, 2012, xiii+301 pp. · Zbl 1248.30001 [12] Iwaniec T., “On \(L^p\)-integrability in PDE”s and quasiregular mappings for large exponents”, Ann. Acad. Sci. Fenn. Ser. AI, 7 (1982), 301-322 · Zbl 0505.30011 [13] Iwaniec T., “\(p\)-Harmonic tensors and quasiregular mappings”, Ann. Math., 136 (1992), 651-685 · Zbl 0785.30009 [14] Iwaniec T., Martin G., “Quasiregular mappings in even dimensions”, Acta Math., 170 (1993), 29-81 · Zbl 0785.30008 [15] Iwaniec T., Martin G., Geometric Function Theory and Non-Linear Analysis, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2001 · Zbl 1045.30011 [16] Iwaniec T., Migliaccio L., Nania L., Sbordone C., “Integrability and removability results for quasiregular mappings in high dimensions”, Math. Scand., 75:2 (1994), 263-279 · Zbl 0824.30009 [17] Martio O., Modern Tools in the Theory of Quasiconformal Maps, Textos de Matematica. Serie B, 27, Universidade de Coimbra, Departamento de Matematica, Coimbra, 2000, 43 pp. · Zbl 0997.30014 [18] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in Modern Mapping Theory, Springer, N.Y., 2009, xii+367 pp. · Zbl 1175.30020 [19] Miklyukov V. M., “Removable singularities of quasi-conformal mappings in space”, Dokl. Akad. Nauk SSSR, 188 (1969), 525-527 (Russian) · Zbl 0204.39401 [20] Pesin I. N., “Metric properties of \(Q\)-quasiconformal mappings”, Mat. Sb. (N.S.), 40(82):3 (1956), 281-294 (Russian) · Zbl 0072.29601 [21] Math. USSR Sb., 21:2 (1973), 240-254 · Zbl 0281.30017 [22] Reshetnyak Yu. G., Space Mappings with Bounded Distortion, Nauka, Novosibirsk, 1982, 288 pp. (Russian) · Zbl 0487.30011 [23] Reshetnyak Yu. G., Space Mappings with Bounded Distortion, Transl. of Math. Monogr., 73, Amer. Math. Soc., Providence, RI, 1989, 362 pp. · Zbl 0667.30018 [24] Rickman S., Quasiregular Mappings, Results in Math. and Related Areas (3), 26, Springer-Verlag, Berlin, 1993, x+213 pp. · Zbl 0816.30017 [25] Sov. Math. Dokl., 16 (1975), 139-142 · Zbl 0321.30024 [26] Sib. Math. J., 18:1 (1977), 35-50 · Zbl 0409.46032 [27] Russ. Math. Surv., 34:1 (1979), 19-74 · Zbl 0429.30017 [28] Vuorinen M., Conformal Geometry and Quasiregular Mappings, Lect. Notes Math., 1319, Springer-Verlag, Berlin etc., 1988, xix+209 pp. · Zbl 0646.30025 [29] Math. USSR Sb., 10:4 (1970), 581-583 · Zbl 0216.09904 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.