×

Analytical solution of fractional Burgers-Huxley equations via residual power series method. (English) Zbl 1483.35318

Summary: This paper is aimed at constructing fractional power series (FPS) solutions of fractional Burgers-Huxley equations using residual power series method (RPSM). RPSM is combining Taylor’s formula series with residual error function. The solutions of our equation are computed in the form of rapidly convergent series with easily calculable components using Mathematica software package. Numerical simulations of the results are depicted through different graphical representations and tables showing that present scheme are reliable and powerful in finding the numerical solutions of fractional Burgers-Huxley equations. The numerical results reveal that the RPSM is very effective, convenient and quite accurate to time dependence kind of nonlinear equations. It is predicted that the RPSM can be found widely applicable in engineering.

MSC:

35R11 Fractional partial differential equations
35C10 Series solutions to PDEs
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems

Software:

Mathematica; RPSM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] K. B. Oldham and J. Spanier, The Fractional Calculus (Academic, New York, 1974). · Zbl 0292.26011
[2] A. M. Lopes, J. A. T. Machado, C. M. A. Pinto, and A. M. S. F. Galhano, “Fractional dynamics and MDS visualization of earthquake phenomena,” Comput. Math. Appl. 66, 647-658 (2013). · doi:10.1016/j.camwa.2013.02.003
[3] H. Beyer and S. Kempfle, “Definition of physical consistent damping laws with fractional derivatives,” Z. Angew. Math. Mech. 75, 623-635 (1995). · Zbl 0865.70014 · doi:10.1002/zamm.19950750820
[4] J. H. He, “Some applications of nonlinear fractional differential equations and their approximations,” Sci. Technol. Soc. 15, 86-90 (1999).
[5] M. Caputo, “Linear models of dissipation whose <Emphasis Type=”Italic“>Q is almost frequency independent-II,” Geophys. J. Int. 13, 529-539 (1967). · doi:10.1111/j.1365-246X.1967.tb02303.x
[6] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods (World Scientific, Singapore, 2009). · Zbl 1248.26011
[7] G. M. Zaslavsky, “Chaos fractional kinetics and anomalous transport,” Phys. Rep. 371, 461-580 (2002). · Zbl 0999.82053 · doi:10.1016/S0370-1573(02)00331-9
[8] R. Hirota, “Exact enve lope-soliton solutions of a non linear wave,” J. Math. Phys. 14, 805-809 (1973). · Zbl 0257.35052 · doi:10.1063/1.1666399
[9] S. Kumar, D. Kumar, and J. Singh, “Numerical computation of fractional Black-Scholes equation arising in nancial market,” Egypt. J. Basic Appl. Sci. 1, 177-183 (2014). · doi:10.1016/j.ejbas.2014.10.003
[10] W. Maliet, “The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations,” J. Comput. Appl. Math. 164, 529-541 (2004). · Zbl 1038.65102 · doi:10.1016/S0377-0427(03)00645-9
[11] V. S. Erturk, S. Momani, and Z. Odibat, “Application of generalized differential transform method to multi-order fractional differential equations,” Commun. Nonlin. Sci. Numer. Simul. 13, 1642-1654 (2008). · Zbl 1221.34022 · doi:10.1016/j.cnsns.2007.02.006
[12] Z. Odibat, C. Bertelle, M. A. Aziz-Alaoui, and G. Duchamp, “A multi-step differential transform method and application to non-chaotic or chaotic systems,” Comput. Math. Appl. 59, 1462-1472 (2010). · Zbl 1189.65170 · doi:10.1016/j.camwa.2009.11.005
[13] Q. Wang, “Homotopy perturbation method for fractional order KdV equation,” Appl. Math. Comput. 190, 1795-1802 (2007). · Zbl 1122.65397
[14] S. Momani and Z. Odibat, “Homotopy perturbation method for nonlinear partial differential equations of fractional order,” Phys. Lett. A 365, 345-350 (2007). · Zbl 1203.65212 · doi:10.1016/j.physleta.2007.01.046
[15] M. Zurigat, “Solving nonlinear fractional differential equation using a multi-step Laplace-Adomian decomposition method,” Ann. Univ. Craiova, Math. Comput. Sci. Ser. 39, 162-172 (2012). · Zbl 1274.65195
[16] S. M. El-Sayed and D. Kaya, “Exact and numerical traveling wave solutions of Whitham Broer-Kaup equations,” Appl. Math. Comput. 167, 1339-1349 (2005). · Zbl 1082.65580
[17] M. Rafei and H. Daniali, “Application of the variational iteration method to the Whitham Broer-Kaup equations,” Comput. Math. Appl. 54, 1079-1085 (2007). · Zbl 1138.76024 · doi:10.1016/j.camwa.2006.12.054
[18] A. A. Freihat, M. Zurigat, and A. H. Handam, “The multi-step homotopy analysis method for modified epidemiological model for computer viruses,” Afrika Math. 26, 585-596 (2015). · Zbl 1317.68015 · doi:10.1007/s13370-014-0230-6
[19] A. H. Handam, A. A. Freihat, and M. Zurigat, “The multi-step homotopy analysis method for solving fractional-order model for HIV infection of CD4+ T cells,” Proyecc. J. Math. 34, 307-322 (2015). · Zbl 1346.34038
[20] M. Zurigat, A. A. Freihat, and A. H. Handam, “The multi-step homotopy analysis method for solving the Jaulent-Miodek equations,” Proyecc. J. Math. 34, 45-54 (2015). · Zbl 1339.65202
[21] S. Haq and M. Ishaq, “Solution of coupled Whitham-Broer-Kaup equations using optimal homotopy asymptotic method,” Ocean Eng. 84, 81-88 (2014). · doi:10.1016/j.oceaneng.2014.03.031
[22] R. B. Albadarneh, I. M. Batiha, and M. Zurigat, “Numerical solutions for linear fractional differential equations of order using finite difference method (FFDM),” J. Math. Comput. Sci. 16, 103-111 (2016). · doi:10.22436/jmcs.016.01.11
[23] O. Abu Arqub, “Series solution of fuzzy differential equations under strongly generalized differentiability,” J. Adv. Res. Appl. Math. 5, 31-52 (2013). · doi:10.5373/jaram.1447.051912
[24] M. Alquran, “Analytical solutions of fractional foam drainage equation by residual power series method,” Math. Sci. 8, 153-160 (2014). · Zbl 1405.35243 · doi:10.1007/s40096-015-0141-1
[25] M. Alquran, “Analytical solutions of time-fractional two-component evolutionary system of order 2 by residual power series method,” J. Appl. Anal. Comput. 5, 589-599 (2015). · Zbl 1447.35111
[26] O. Abu Arqub, A. EI-Ajou, Z. Al Zhour, and S. Momani, “Multiple solutions of nonlinear boundary value problems of fractional order: a new analytic iterative technique,” Entropy 16, 471-493 (2014). · doi:10.3390/e16010471
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.