×

Global properties of a general latent pathogen dynamics model with delayed pathogenic and cellular infections. (English) Zbl 1453.92296

Summary: This paper studies the global dynamics of a general pathogenic infection model with two ways of infections. The effect of antibody immune response is analyzed. We incorporate three discrete time delays and both latently infected cells and actively infected cells. The infection rate and production and clearance/death rates of the cells and pathogens are given by general functions. We determine two threshold parameters to investigate the global stability of three equilibria. We use Lyapunov method to establish the global stability. We support our theoretical results by numerical simulations.

MSC:

92D30 Epidemiology
34K60 Qualitative investigation and simulation of models involving functional-differential equations
34K20 Stability theory of functional-differential equations
92C60 Medical epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Nowak, M. A.; Bangham, C. R. M., Population dynamics of immune responses to persistent viruses, Science, 272, 5258, 74-79 (1996) · doi:10.1126/science.272.5258.74
[2] Hattaf, K.; Yousfi, N.; Tridane, A., Mathematical analysis of a virus dynamics model with general incidence rate and cure rate, Nonlinear Analysis: Real World Applications, 13, 4, 1866-1872 (2012) · Zbl 1254.92065 · doi:10.1016/j.nonrwa.2011.12.015
[3] Hattaf, K.; Yousfi, N., A generalized virus dynamics model with cell-to-cell transmission and cure rate, Advances in Difference Equations, 2016, article 174 (2016) · Zbl 1418.92166
[4] Huang, G.; Takeuchi, Y.; Ma, W., Lyapunov functionals for delay differential equations model of viral infections, SIAM Journal on Applied Mathematics, 70, 7, 2693-2708 (2010) · Zbl 1209.92035 · doi:10.1137/090780821
[5] Callaway, D. S.; Perelson, A. S., HIV-1 infection and low steady state viral loads, Bulletin of Mathematical Biology, 64, 1, 29-64 (2002) · Zbl 1334.92227 · doi:10.1006/bulm.2001.0266
[6] Monica, C.; Pitchaimani, M., Analysis of stability and Hopf bifurcation for HIV-1 dynamics with PI and three intracellular delays, Nonlinear Analysis: Real World Applications, 27, 55-69 (2016) · Zbl 1331.34158 · doi:10.1016/j.nonrwa.2015.07.014
[7] Elaiw, A. M.; Elnahary, E. K.; Raezah, A. A., Effect of cellular reservoirs and delays on the global dynamics of HIV, Advances in Difference Equations, 2018, article 85 (2018) · Zbl 1445.92270
[8] Elaiw, A. M., Global properties of a class of HIV models, Nonlinear Analysis: Real World Applications, 11, 4, 2253-2263 (2010) · Zbl 1197.34073 · doi:10.1016/j.nonrwa.2009.07.001
[9] Elaiw, A. M., Global properties of a class of virus infection models with multitarget cells, Nonlinear Dynamics, 69, 1-2, 423-435 (2012) · Zbl 1254.92064 · doi:10.1007/s11071-011-0275-0
[10] Elaiw, A.; Almuallem, N., Global properties of delayed-HIV dynamics models with differential drug efficacy in cocirculating target cells, Applied Mathematics and Computation, 265, 1067-1089 (2015) · Zbl 1410.34160 · doi:10.1016/j.amc.2015.06.011
[11] Elaiw, A. M.; Almuallem, N. A., Global dynamics of delay-distributed HIV infection models with differential drug efficacy in cocirculating target cells, Mathematical Methods in the Applied Sciences, 39, 1, 4-31 (2016) · Zbl 1329.92073 · doi:10.1002/mma.3453
[12] Elaiw, A.; Hassanien, I.; Azoz, S., Global stability of HIV infection models with intracellular delays, Journal of the Korean Mathematical Society, 49, 4, 779-794 (2012) · Zbl 1256.34068 · doi:10.4134/JKMS.2012.49.4.779
[13] Elaiw, A. M.; Azoz, S. A., Global properties of a class of HIV infection models with Beddington-DeAngelis functional response, Mathematical Methods in the Applied Sciences, 36, 4, 383-394 (2013) · Zbl 1329.34089 · doi:10.1002/mma.2596
[14] Li, M. Y.; Wang, L., Backward bifurcation in a mathematical model for HIV infection in vivo with anti-retroviral treatment, Nonlinear Analysis: Real World Applications, 17, 147-160 (2014) · Zbl 1325.92054 · doi:10.1016/j.nonrwa.2013.11.002
[15] Liu, S.; Lu, X.; Chen, Y.; Li, B., A delayed HIV-1 model with virus waning term, Mathematical Biosciences and Engineering, 13, 1, 135-157 (2016) · Zbl 1329.34129 · doi:10.3934/mbe.2016.13.135
[16] Wang, K.; Fan, A.; Torres, A., Global properties of an improved hepatitis B virus model, Nonlinear Analysis: Real World Applications, 11, 4, 3131-3138 (2010) · Zbl 1197.34081 · doi:10.1016/j.nonrwa.2009.11.008
[17] Gibelli, L.; Ełaiw, A.; Alghamdi, M. A.; Althiabi, A. M., Heterogeneous population dynamics of active particles: progression, mutations, and selection dynamics, Mathematical Models and Methods in Applied Sciences, 27, 04, 617-640 (2017) · Zbl 1366.82078 · doi:10.1142/S0218202517500117
[18] Wang, J.; Guo, M.; Liu, X.; Zhao, Z., Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay, Applied Mathematics and Computation, 291, 149-161 (2016) · Zbl 1410.92138 · doi:10.1016/j.amc.2016.06.032
[19] Ełaiw, A. M.; Raezah, A. A.; Hattaf, K., Stability of HIV-1 infection with saturated virus-target and infected-target incidences and CTL immune response, International Journal of Biomathematics, 10, 1-29 (2017) · Zbl 1367.34098
[20] Deans, J. A.; Cohen, S., Immunology of malaria, Annual Review of Microbiology, 37, 25-50 (1983) · doi:10.1146/annurev.mi.37.100183.000325
[21] Murase, A.; Sasaki, T.; Kajiwara, T., Stability analysis of pathogen-immune interaction dynamics, Journal of Mathematical Biology, 51, 3, 247-267 (2005) · Zbl 1086.92029 · doi:10.1007/s00285-005-0321-y
[22] Wang, S.; Zou, D., Global stability of in-host viral models with humoral immunity and intracellular delays, Applied Mathematical Modelling, 36, 3, 1313-1322 (2012) · Zbl 1243.34106 · doi:10.1016/j.apm.2011.07.086
[23] Wang, T.; Hu, Z.; Liao, F., Stability and Hopf bifurcation for a virus infection model with delayed humoral immunity response, Journal of Mathematical Analysis and Applications, 411, 1, 63-74 (2014) · Zbl 1308.92104 · doi:10.1016/j.jmaa.2013.09.035
[24] Elaiw, A. M.; AlShamrani, N. H., Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal, Nonlinear Analysis: Real World Applications, 26, 161-190 (2015) · Zbl 1371.92077 · doi:10.1016/j.nonrwa.2015.05.007
[25] Elaiw, A. M.; AlShamrani, N. H., Stability of a general delay-distributed virus dynamics model with multi-staged infected progression and immune response, Mathematical Methods in the Applied Sciences, 40, 3, 699-719 (2017) · Zbl 1402.92387 · doi:10.1002/mma.4002
[26] Wang, T.; Hu, Z.; Liao, F.; Ma, W., Global stability analysis for delayed virus infection model with general incidence rate and humoral immunity, Mathematics and Computers in Simulation, 89, 13-22 (2013) · Zbl 1490.92118 · doi:10.1016/j.matcom.2013.03.004
[27] Xu, J.; Zhou, Y.; Li, Y.; Yang, Y., Global dynamics of a intracellular infection model with delays and humoral immunity, Mathematical Methods in the Applied Sciences, 39, 18, 5427-5435 (2016) · Zbl 1355.34120 · doi:10.1002/mma.3927
[28] Li, L.; Xu, R., Global dynamics of an age-structured in-host viral infection model with humoral immunity, Advances in Difference Equations, 2016, article 6 (2016) · Zbl 1418.92173
[29] Miao, H.; Teng, Z.; Kang, C.; Muhammadhaji, A., Stability analysis of a virus infection model with humoral immunity response and two time delays, Mathematical Methods in the Applied Sciences, 39, 12, 3434-3449 (2016) · Zbl 1347.34118 · doi:10.1002/mma.3790
[30] Culshaw, R. V.; Ruan, S.; Webb, G., A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, Journal of Mathematical Biology, 46, 5, 425-444 (2003) · Zbl 1023.92011 · doi:10.1007/s00285-002-0191-5
[31] Pourbashash, H.; Pilyugin, S. S.; De Leenheer, P.; McCluskey, C., Global analysis of within host virus models with cell-to-cell viral transmission, Discrete and Continuous Dynamical Systems - Series B, 19, 10, 3341-3357 (2014) · Zbl 1330.37076 · doi:10.3934/dcdsb.2014.19.3341
[32] Wang, J.; Lang, J.; Zou, X., Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission, Nonlinear Analysis: Real World Applications, 34, 75-96 (2017) · Zbl 1352.92174 · doi:10.1016/j.nonrwa.2016.08.001
[33] Chen, S.-S.; Cheng, C.-Y.; Takeuchi, Y., Stability analysis in delayed within-host viral dynamics with both viral and cellular infections, Journal of Mathematical Analysis and Applications, 442, 2, 642-672 (2016) · Zbl 1341.92040 · doi:10.1016/j.jmaa.2016.05.003
[34] Lai, X.; Zou, X., Modeling cell-to-cell spread of HIV-1 with logistic target cell growth, Journal of Mathematical Analysis and Applications, 426, 1, 563-584 (2015) · Zbl 1316.92086 · doi:10.1016/j.jmaa.2014.10.086
[35] Elaiw, A. M.; Raezah, A. A., Stability of general virus dynamics models with both cellular and viral infections and delays, Mathematical Methods in the Applied Sciences, 40, 16, 5863-5880 (2017) · Zbl 1384.92056 · doi:10.1002/mma.4436
[36] Lai, X.; Zou, X., Modelling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission, SIAM Journal on Applied Mathematics, 74, 3, 898-917 (2014) · Zbl 1304.34139 · doi:10.1137/130930145
[37] Yang, Y.; Zou, L.; Ruan, S., Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions, Mathematical Biosciences, 270, 183-191 (2015) · Zbl 1331.34160 · doi:10.1016/j.mbs.2015.05.001
[38] Lin, J.; Xu, R.; Tian, X., Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity, Applied Mathematics and Computation, 315, 516-530 (2017) · Zbl 1426.92078 · doi:10.1016/j.amc.2017.08.004
[39] Perelson, A. S.; Kirschner, D. E.; Boer, R. D., Dynamics of HIV infection of CD4+ T cells, Mathematical Biosciences, 114, 1, 81-125 (1993) · Zbl 0796.92016 · doi:10.1016/0025-5564(93)90043-A
[40] Buonomo, B.; Vargas-De-León, C., Global stability for an HIV-1 infection model including an eclipse stage of infected cells, Journal of Mathematical Analysis and Applications, 385, 2, 709-720 (2012) · Zbl 1223.92024 · doi:10.1016/j.jmaa.2011.07.006
[41] Elaiw, A. M.; Raezah, A. A.; Azoz, S. A., Stability of delayed HIV dynamics models with two latent reservoirs and immune impairment, Advances in Difference Equations, 2018, article 414 (2018) · Zbl 1448.92127 · doi:10.1186/s13662-018-1869-3
[42] Elaiw, A. M.; AlShamrani, N. H., Stability of an adaptive immunity pathogen dynamics model with latency and multiple delays, Mathematical Methods in the Applied Sciences, 41, 16, 6645-6672 (2018) · Zbl 1404.34091 · doi:10.1002/mma.5182
[43] Korobeinikov, A., Global properties of basic virus dynamics models, Bulletin of Mathematical Biology, 66, 4, 879-883 (2004) · Zbl 1334.92409 · doi:10.1016/j.bulm.2004.02.001
[44] Elaiw, A. M.; Raezah, A. A.; Alofi, A. S., Stability of a general delayed virus dynamics model with humoral immunity and cellular infection, AIP Advances, 7, 8 (2016)
[45] Hobiny, A. D.; Elaiw, A. M.; Almatrafi, A. A., Stability of delayed pathogen dynamics models with latency and two routes of infection, Advances in Difference Equations, 2018, article 276 (2018) · Zbl 1446.92231
[46] Yang, X.; Chen, L.; Chen, J., Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models, Computers & Mathematics with Applications, 32, 4, 109-116 (1996) · Zbl 0873.34061 · doi:10.1016/0898-1221(96)00129-0
[47] Tunç, C., New results on the stability and boundedness of nonlinear differential equations of fifth order with multiple deviating arguments, Bulletin of the Malaysian Mathematical Sciences Society, 36, 3, 671-682 (2013) · Zbl 1275.34095
[48] Hale, J. K.; Lunel, S. M. V., Introduction to Functional Differential Equations (1993), New York, NY, USA: Springer, New York, NY, USA · Zbl 0787.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.