Sets of lengths. (English) Zbl 1391.13004

Summary: Oftentimes the elements of a ring or semigroup can be written as finite products of irreducible elements. An element \(a\) can be a product of \(k\) irreducibles and a product of \(l\) irreducibles. The set \(\mathrm L(a)\) of all possible factorization lengths of \(a\) is called the set of lengths of \(a\), and the system consisting of all these sets \(\mathrm L(a)\) is a well-studied means of describing the nonuniqueness of factorizations of a ring or semigroup. We provide a friendly introduction, which is largely self-contained, to what is known about systems of sets of lengths for rings of integers of algebraic number fields and for transfer Krull monoids of finite type as their generalization.


13A05 Divisibility and factorizations in commutative rings
20M13 Arithmetic theory of semigroups
11B39 Fibonacci and Lucas numbers and polynomials and generalizations
11R37 Class field theory


Full Text: DOI arXiv


[1] D. D. Anderson, Ed., Factorization in Integral Domains. Lect. Notes Pure Appl. Math., Vol. 189, Dekker, New York, 1997.
[2] D. Bachman, N. Baeth, J. Gossell, Factorizations of upper triangular matrices, Linear Algebra Appl. 450 (2014) 138-157. · Zbl 1352.20042
[3] N. R. Baeth, A. Geroldinger, D. J. Grynkiewicz, D. Smertnig, A semigroup-theoretical view of direct-sum decompositions and associated combinatorial problems, J. Algebra Appl. 14 (2015) 1550016 (60 pages). · Zbl 1385.16003
[4] N. R. Baeth, D. Smertnig, Factorization theory: From commutative to noncommutative settings, J. Algebra 441 (2015) 475-551. · Zbl 1331.20074
[5] N. R. Baeth, R. Wiegand, Factorization theory and decomposition of modules, Amer. Math. Monthly 120 (2013) 3-34. · Zbl 1271.13023
[6] P. Baginski, S. T. Chapman, Factorizations of algebraic integers, block monoids, and additive number theory, Amer. Math. Monthly 118 (2011) 901-920. · Zbl 1246.11172
[7] P. Baginski, A. Geroldinger, D. J. Grynkiewicz, A. Philipp, Products of two atoms in Krull monoids and arithmetical characterizations of class groups, Eur. J. Comb. 34 (2013) 1244-1268. · Zbl 1309.20050
[8] P.-J. Cahen, J.-L. Chabert, Integer-Valued Polynomials, Vol. 48, Amer. Math. Soc. Surveys and Monographs, Washington, DC, 1997. · Zbl 0884.13010
[9] P.-J. Cahen, J.-L. Chabert, What you should know about integer-valued polynomials, Amer. Math. Monthly 123 (2016) 311-337. · Zbl 1391.13037
[10] S. T. Chapman, A tale of two monoids: A friendly introduction to nonunique factorizations, Math. Mag. 87 (2014) 163-173. · Zbl 1298.11007
[11] S. T. Chapman, M. Fontana, A. Geroldinger, B. Olberding, Eds., Multiplicative Ideal Theory and Factorization Theory. Proceedings in Mathematics and Statistics, Vol. 170, Springer, New York, 2016. · Zbl 1346.13002
[12] S. T. Chapman, W. W. Smith, Factorization in Dedekind domains with finite class group, Isr. J. Math. 71 (1990) 65-95. · Zbl 0717.13014
[13] J. Coykendall, W. W. Smith, On unique factorization domains, J. Algebra 332 (2011) 62-70. · Zbl 1235.13014
[14] M. Delgado, P. A. García-Sánchez, J. Morais, “Numericalsgps”: A gap package on numerical semigroups, (http://www.gap-system.org/Packages/numericalsgps.html).
[15] A. Facchini, Direct sum decomposition of modules, semilocal endomorphism rings, and Krull monoids, J. Algebra 256 (2002) 280-307. · Zbl 1016.16002
[16] M. Fontana, E. Houston, T. Lucas, Factoring Ideals in Integral Domains, Lecture Notes of the Unione Matematica Italiana, Vol. 14, Springer, New York, 2013. · Zbl 1261.13011
[17] S. Frisch, A construction of integer-valued polynomials with prescribed sets of lengths of factorizations, Monatsh. Math. 171 (2013) 341-350. · Zbl 1282.13004
[18] S. Frisch, Relative polynomial closure and monadically Krull monoids of integer-valued polynomials, in Multiplicative Ideal Theory and Factorization Theory. Eds. S. T. Chapman, M. Fontana, A. Geroldinger, B. Olberding. Springer, New York, 2016. 145-157. · Zbl 1352.13013
[19] W. Gao, A. Geroldinger, On products of k atoms, Monatsh. Math. 156 (2009) 141-157. · Zbl 1184.20051
[20] P. A. García-Sánchez, An overview of the computational aspects of nonunique factorization invariants, in Multiplicative Ideal Theory and Factorization Theory. Eds. S. T. Chapman, M. Fontana, A. Geroldinger, B. Olberding. Springer, New York, 2016. 159-181. · Zbl 1394.20034
[21] A. Geroldinger, Über nicht-eindeutige zerlegungen in irreduzible elemente, Math. Z. 197 (1988) 505-529. · Zbl 0618.12002
[22] A. Geroldinger, Non-commutative Krull monoids: A divisor theoretic approach and their arithmetic, Osaka J. Math. 50 (2013) 503-539. · Zbl 1279.20073
[23] A. Geroldinger, F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Chapman & Hall/CRC, Boca Raton, FL, 2006. · Zbl 1113.11002
[24] A. Geroldinger, F. Kainrath, On the arithmetic of tame monoids with applications to Krull monoids and Mori domains, J. Pure Appl. Algebra 214 (2010) 2199-2218. · Zbl 1207.20055
[25] A. Geroldinger, F. Kainrath, A. Reinhart, Arithmetic of seminormal weakly Krull monoids and domains, J. Algebra 444 (2015) 201-245. · Zbl 1327.13006
[26] A. Geroldinger, G. Lettl, Factorization problems in semigroups, Semigroup Forum 40 (1990) 23-38. · Zbl 0693.20063
[27] A. Geroldinger, S. Ramacher, A. Reinhart, On υ-Marot Mori rings and C-rings, J. Korean Math. Soc. 52 (2015) 1-21. · Zbl 1327.13064
[28] A. Geroldinger, I. Ruzsa, Combinatorial Number Theory and Additive Group Theory, Advanced Courses in Mathematics, CRM Barcelona, Birkhäuser, 2009. · Zbl 1177.11005
[29] A. Geroldinger, W. A. Schmid, A characterization of class groups via sets of lengths, http://arxiv.org/abs/1503.04679. · Zbl 1396.20069
[30] A. Geroldinger, W. A. Schmid, Q. Zhong, Systems of sets of lengths: Transfer Krull monoids versus weakly Krull monoids, http://arxiv.org/abs/1606.05063. · Zbl 1434.11036
[31] A. Geroldinger, P. Yuan, The set of distances in Krull monoids, Bull. Lond. Math. Soc. 44 (2012) 1203-1208. · Zbl 1255.13002
[32] A. Geroldinger, Q. Zhong, A characterization of class groups via sets of lengths II, J. Théor. Nombres Bordx. (forthcoming). · Zbl 1410.11121
[33] A. Geroldinger, Q. Zhong, The set of minimal distances in Krull monoids, Acta Arith. 173 (2016) 97-120. · Zbl 1360.20053
[34] D. J. Grynkiewicz, Structural Additive Theory. Developments in Mathematics, Springer, New York, 2013. · Zbl 1368.11109
[35] F. Halter-Koch, Finitely generated monoids, finitely primary monoids and factorization properties of integral domains, in Factorization in Integral Domains. Ed. D. D. Anderson. Lect. Notes Pure Appl. Math., Vol. 189, Dekker, New York, 1997. 73-112. · Zbl 0882.13027
[36] F. Halter-Koch, Ideal Systems. An Introduction to Multiplicative Ideal Theory.Marcel Dekker, New York, 1998. · Zbl 0953.13001
[37] G. Hegedüs, Z. Li, J. Schicho, H. P. Schröcker, From the fundamental theorem of algebra to Kempe’s universality theorem, Int. Math. Nachrichten 229 (2015) 13-26. · Zbl 1397.70004
[38] B. Jacobson, Matrix number theory: An example of non-unique factorization, Amer. Math. Monthly 72 (1965) 399-402. · Zbl 0134.25204
[39] F. Kainrath, Arithmetic of Mori domains and monoids: The Global Case, Multiplicative Ideal Theory and Factorization Theory.Springer, 2016. 183-218. · Zbl 1394.20035
[40] F. Kainrath, Factorization in Krull monoids with infinite class group, Colloq. Math. 80 (1999) 23-30. · Zbl 0936.20050
[41] P. Malcolmson, F. Okoh, Half-factorial subrings of factorial domains, J. Pure Appl. Algebra 220 (2016) 877-891. · Zbl 1331.13014
[42] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers.Third ed.Springer, New York, 2004. · Zbl 1159.11039
[43] A. Reinhart, On the divisor-class group of monadic submonoids of rings of integer-valued polynomials, Commun. Korean Math. Soc. (forthcoming). · Zbl 1386.13012
[44] A. Reinhart, On monoids and domains whose monadic submonoids are Krull, in Commutative Algebra. Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions. Eds. M. Fontana, S. Frisch, S. Glaz. Springer, New York, 2014. 307-330.
[45] M. Roitman, Half-factorial domains, manuscript. · Zbl 1243.13018
[46] W. A. Schmid, A realization theorem for sets of lengths, J. Number Theory 129 (2009) 990-999. · Zbl 1191.11031
[47] W. A. Schmid, Some recent results and open problems on sets of lengths of Krull monoids with finite class group, in Multiplicative Ideal Theory and Factorization Theory. Eds. S. T. Chapman, M. Fontana, A. Geroldinger, B. Olberding. Springer, New York, 2016. 323-352. · Zbl 1394.20036
[48] D. Smertnig, Factorizations in bounded hereditary noetherian prime rings, http://arxiv.org/abs/1605.09274. · Zbl 1356.16029
[49] D. Smertnig, Sets of lengths in maximal orders in central simple algebras, J. Algebra 390 (2013) 1-43. · Zbl 1295.16023
[50] D. Smertnig, Factorizations of elements in noncommutative rings: A Survey, in Multiplicative Ideal Theory and Factorization Theory. Eds. S. T. Chapman, M. Fontana, A. Geroldinger, B. Olberding. Springer, New York, 2016. 353-402. · Zbl 1356.16029
[51] Q. Zhong, Sets of minimal distances and characterizations of class groups of Krull monoids, http://arxiv.org/abs/1606.08039. · Zbl 1426.11005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.