×

Quantifying transport within a two-cell microdroplet induced by circular and sharp channel bends. (English) Zbl 1326.76045

Summary: A passive method for obtaining good mixing within microdroplets is to introduce curves in the boundaries of the microchannels in which they flow. This article develops a method which quantifies the role of piecewise circular or straight channel boundaries on the transport within a two-cell microdroplet. Transport between the two cells is quantified as an easily computable time-varying flux, which quantifies how lobes intrude from one cell to the other as the droplet traverses the channel. The computation requires neither numerically solving unsteady boundary value problems nor performing trajectory integration, thereby providing an efficient new method for investigating the role of channel geometry on intra-droplet transport.{
©2015 American Institute of Physics}

MSC:

76F25 Turbulent transport, mixing
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Huebner, A.; Srisa-Art, M.; Holt, D.; Abell, C.; Hollfelder, F.; deMello, A.; Edel, J., Quantitative detection of protein expression in single cells using droplet microfluidics, Chem. Commun., 2007, 1218-1220 (2007) · doi:10.1039/b618570c
[2] Frenz, L.; Harrack, A. E.; Pauly, M.; Bégin-Colin, S.; Griffiths, D.; Baret, J.-C., Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles, Angew. Chem., Int. Ed., 47, 6817-6820 (2008) · doi:10.1002/anie.200801360
[3] Liu, Z.; Huang, Y.; Jin, Y.; Chen, Y., Mixing intensification by chaotic advection inside droplets for controlled nanoparticle preparation, Microfluid. Nanofluid., 9, 773-786 (2010) · doi:10.1007/s10404-010-0593-4
[4] Whitesides, G., The origins and future of microfluidics, Nature, 442, 368-373 (2006) · doi:10.1038/nature05058
[5] Huebner, A.; Sharma, S.; Srisa-Art, M.; Hollfelder, F.; Edel, J.; deMello, A., Microdroplets: A sea of applications, Lab Chip, 8, 1244-1254 (2008) · doi:10.1039/b806405a
[6] Teh, S.-Y.; Lin, R.; Hung, L.-H.; Lee, A., Droplet microfluidics, Lab Chip, 8, 198-220 (2008) · doi:10.1039/b715524g
[7] Atencia, J.; Beebe, D., Controlled microfluidic interfaces, Nature, 439, 648-655 (2005) · doi:10.1038/nature04163
[8] Niu, X.; Gielen, F.; Edel, J.; deMello, A., A microdroplet dilutor for high-throughput screening, Nat. Chem., 3, 437-442 (2011) · doi:10.1038/nchem.1046
[9] Bezagu, M.; Enrico, C.; Chaulot-Talmon, V.; Monti, F.; Tanter, M.; Taberling, P.; Cossy, J.; Arseniyadis, S.; Couture, O., High spatiotemporal control of spontaneous reactions using ultrasound-triggered composite droplets, J. Am. Chem. Soc., 136, 7205-7208 (2014) · doi:10.1021/ja5019354
[10] Fidalgo, L.; Whyte, G.; Ruotolo, B.; Benesch, J.; Stengel, F.; Abell, C.; Robinson, C.; Huck, W., Coupling microdroplet microreactors with mass spectrometry: Reading the contents of single droplets online, Angew. Chem., Int. Ed., 48, 3665-3668 (2009) · doi:10.1002/anie.200806103
[11] Seo, K.; Kim, D., Microfluidic synthesis of thermo-responsive poly(n-isopropylacrylamide)-poly(ethylene glycol) diacreylate microhydrogels as chemo-embolic microspheres, J. Micromech. Microeng., 24, 085001 (2014) · doi:10.1088/0960-1317/24/8/085001
[12] van Steijn, V.; Korczyk, P.; Derzsi, L.; Abate, A.; Weitz, D.; Garstecki, P., Block-and-break generation of microdroplets with fixed volume, Biomicrofluidics, 7, 024108 (2013) · doi:10.1063/1.4801637
[13] Tarchichi, N.; Chollet, F.; Manceau, J.-F., New regime of droplet generation in a T-shape microfluidic junction, Microfluid. Nanofluid., 14, 45-51 (2013) · doi:10.1007/s10404-012-1021-8
[14] Boreyko, J.; Mruetusatorn, P.; Retterer, S.; Collier, C., Aqueous two-phase microdroplets with reversible phase transitions, Lab Chip, 13, 1295-1301 (2013) · doi:10.1039/c3lc41122b
[15] Samie, M.; Salari, A.; Shafii, M., Breakup of microdroplets in asymmetric T junctions, Phys. Rev. E, 87, 053003 (2013) · doi:10.1103/PhysRevE.87.053003
[16] Sun, X.; Tang, K.; Smith, R.; Kelly, R., Controlled dispensing and mixing of pico- and nanoliter volumes using on-demand droplet-based microfluidics, Microfluid. Nanofluid., 15, 117-126 (2013) · doi:10.1007/s10404-012-1133-1
[17] Zhou, H.; Yao, S., A facile on-demand droplet microfluidic system for lab-on-a-chip applications, Microfluid. Nanofluid., 16, 667-675 (2014) · doi:10.1007/s10404-013-1268-8
[18] Chen, D.; Gerdts, C.; Ismalgilov, R., Using microfluidics to observe the effect of mixing on nucleation of protein crystals, J. Am. Chem. Soc., 127, 9672-9673 (2005) · doi:10.1021/ja052279v
[19] Hosokawa, M.; Hoshino, Y.; Nishikawa, Y.; Hirose, Y.; Yoon, D.; Mori, T.; Sekiguchi, T.; Shoji, S.; Takeyama, H., Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes, Biosens. Bioelectron., 67, 379-385 (2015) · doi:10.1016/j.bios.2014.08.059
[20] Gao, G.; Pfeifer, E.; Farah, H.; Karampini, E.; Dua, D.; Kamal, N.; Kane, P.; Tobal, K.; Sethi, T.; Spicer, J.; McCaughan, F., Microdroplet digital PCR: Detection and quantitation of biomarkers in archived tissue and serial plasma samples in patients with lung cancer, J. Thorac. Oncol., 10, 212-217 (2015) · doi:10.1097/JTO.0000000000000349
[21] Song, H.; Tice, J.; Ismalgilov, R., A microfluidic system for controlling reaction networks in time, Angew. Chem., Int. Ed., 42, 768-772 (2003) · doi:10.1002/anie.200390203
[22] Bringer, M.; Gerdts, C.; Song, H.; Tice, J.; Ismalgilov, R., Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets, Philos. Trans. R. Soc., A, 362, 1087-1104 (2004) · doi:10.1098/rsta.2003.1364
[23] Mittal, N.; Cohen, C.; Bibette, J.; Bremond, N., Dynamics of step-emulsification: From a single to a collection of emulsion droplet generators, Phys. Fluids, 26, 082109 (2014) · doi:10.1063/1.4892949
[24] Song, H.; Bringer, M.; Tice, J.; Gerdts, C.; Ismalgilov, R., Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels, Appl. Phys. Lett., 83, 4664-4666 (2003) · doi:10.1063/1.1630378
[25] Grigoriev, R., Chaotic mixing in thermocapillary-driven microdroplets, Phys. Fluids, 17, 033601 (2005) · Zbl 1187.76188 · doi:10.1063/1.1850374
[26] Tung, K.-Y.; Li, C.-C.; Yang, J.-T., Mixing and hydrodynamic analysis of a droplet in a planar serpentine micromixer, Microfluid. Nanofluid., 7, 545-557 (2009) · doi:10.1007/s10404-009-0415-8
[27] Cordero, M.; Rolfsnes, H.; Burnham, D.; Campbell, P.; McGloin, D.; Baroud, C., Mixing via thermocapillary generation of flow patterns inside a microfluidic drop, New J. Phys., 11, 075033 (2009) · doi:10.1088/1367-2630/11/7/075033
[28] Jones, S.; Thomas, O.; Aref, H., Chaotic advection by laminar flow in a twisted pipe, J. Fluid Mech., 209, 335-357 (1989) · doi:10.1017/S0022112089003137
[29] Stone, Z.; Stone, H., Imaging and quantifying mixing in a model droplet micromixer, Phys. Fluids, 17, 06313 (2005) · Zbl 1187.76503 · doi:10.1063/1.1929547
[30] Kroujiline, D.; Stone, H., Chaotic streamlines in steady bounded three-dimensional Stokes flows, Physica D, 130, 105-132 (1999) · Zbl 0944.76014 · doi:10.1016/S0167-2789(99)00003-2
[31] Muradoglu, M.; Stone, H., Mixing in a drop moving through a serpentine channel: A computational study, Phys. Fluids, 17, 073305 (2005) · Zbl 1187.76374 · doi:10.1063/1.1992514
[32] Dogan, H.; Nas, S.; Muradoglu, M., Mixing of miscible liquids in gas-segmented serpentine channels, Int. J. Multiphase Flow, 35, 1149-1158 (2009) · doi:10.1016/j.ijmultiphaseflow.2009.07.006
[33] Che, Z.; Nguyen, N.-T.; Wong, T., Analysis of chaotic mixing in plugs moving in meandering microchannels, Phys. Rev. E, 84, 066309 (2011) · doi:10.1103/PhysRevE.84.066309
[34] Sivasamy, J.; Che, Z.; Wong, T.; Nguyen, N.-T.; Yobas, L., A simple method for evaluating and predicting chaotic advection in microfluidic slugs, Chem. Eng. Sci., 65, 5382-5391 (2010) · doi:10.1016/j.ces.2010.06.017
[35] Che, Z.; Wong, T.; Nguyen, N.-T., An analytical model for a liquid plug moving in curved microchannels, Int. J. Heat Mass Transfer, 53, 1977-1985 (2010) · Zbl 1305.76033 · doi:10.1016/j.ijheatmasstransfer.2009.12.058
[36] Hadamard, J., Mouvement permanent lent d’une sphère liquide et visqueuse dans un liquide visqueux, C. R. Acad. Sci. Paris, 152, 1735-1738 (1911) · JFM 42.0813.01
[37] Rybczynski, W., Über die fortschreitende bewegung einer flüssigen kugel in einem zähen medium, Bull. Acad. Sci. Cracovi A, 1911, 40-46 (1911) · JFM 42.0811.02
[38] Haber, S.; Hestroni, G., The dynamics of a deformable drop suspended in an unbounded Stokes flow, J. Fluid Mech., 49, 257-277 (1971) · Zbl 0219.76040 · doi:10.1017/S0022112071002040
[39] Sarrazin, F.; Loubière, K.; Prat, L.; Gourdon, C.; Bonometti, T.; Magnaudet, J., Experimental and numerical study of droplet hydrodynamics in microchannels, AIChE J., 52, 4061-4070 (2006) · doi:10.1002/aic.11033
[40] Sarrazin, F.; Bonometti, T.; Prat, L.; Gourdon, C.; Magnaudet, J., Hydrodynamic structures of droplets engineered in rectangular micro-channels, Microfluid. Nanofluid., 5, 131-137 (2008) · doi:10.1007/s10404-007-0233-9
[41] Grigoriev, R.; Schatz, M.; Sharma, V., Chaotic mixing in microdroplets, Lab Chip, 6, 1369-1372 (2006) · doi:10.1039/b607003e
[42] Stone, H.; Nadim, A.; Strogatz, S., Chaotic streamlines inside drops immersed in steady Stokes flows, J. Fluid Mech., 232, 629-646 (1991) · Zbl 0729.76592 · doi:10.1017/S002211209100383X
[43] Chabreyrie, R.; Vainchtein, D.; Chandre, C.; Singh, P.; Aubry, N., Tailored mixing inside a translating droplet, Phys. Rev. E, 77, 036314 (2008) · doi:10.1103/PhysRevE.77.036314
[44] Wu, F.; Vainchtein, D., On localized mixing in action-action-angle flows, Commun. Nonlinear Sci. Numer. Simul., 19, 67-73 (2014) · Zbl 1344.76030 · doi:10.1016/j.cnsns.2013.04.016
[46] Balasuriya, S., Nonautonomous flows as open dynamical sytems: Characterising escape rates and time-varying boundaries, in Ergodic Theory, Open Dynamics and Structures, 1-30 (2014) · Zbl 1352.37071
[47] Balasuriya, S., Cross-separatrix flux in time-aperiodic and time-impulsive flows, Nonlinearity, 19, 2775-2795 (2006) · Zbl 1118.34041 · doi:10.1088/0951-7715/19/12/003
[48] Rom-Kedar, V.; Leonard, A.; Wiggins, S., An analytical study of transport, mixing and chaos in an unsteady vortical flow, J. Fluid Mech., 214, 347-394 (1990) · Zbl 0698.76028 · doi:10.1017/S0022112090000167
[49] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (1983) · Zbl 0515.34001
[50] Wiggins, S., Chaotic Transport in Dynamical Systems (1992) · Zbl 0747.34028
[51] Rom-Kedar, V.; Poje, A. C., Universal properties of chaotic transport in the presence of diffusion, Phys. Fluids, 11, 2044-2057 (1999) · Zbl 1147.76483 · doi:10.1063/1.870067
[52] Balasuriya, S., Optimal perturbation for enhanced chaotic transport, Physica D, 202, 155-176 (2005) · Zbl 1080.34028 · doi:10.1016/j.physd.2004.11.018
[53] Balasuriya, S., An approach for maximizing chaotic mixing in microfluidic devices, Phys. Fluids, 17, 118103 (2005) · Zbl 1188.76009 · doi:10.1063/1.2042507
[54] Balasuriya, S.; Finn, M., Energy constrained transport maximization across a fluid interface, Phys. Rev. Lett., 108, 244503 (2012) · doi:10.1103/PhysRevLett.108.244503
[55] Balasuriya, S., Optimal frequency for microfluidic mixing across a fluid interface, Phys. Rev. Lett., 105, 064501 (2010) · doi:10.1103/PhysRevLett.105.064501
[56] Mosovsky, B.; Meiss, J., Transport in transitory three-dimensional Liouville flows, SIAM J. Appl. Dyn. Syst., 11, 1785-1816 (2012) · Zbl 1275.37030 · doi:10.1137/120870426
[57] Spells, K., A study of circulation patterns within liquid drops moving in a liquid, Proc. Phys. Soc., London, Sect. B, 65, 541-546 (1952) · doi:10.1088/0370-1301/65/7/310
[58] Coppel, W., Dichotomies in Stability Theory, 629 (1978) · Zbl 0376.34001
[59] Yi, Y., A generalized integral manifold theorem, J. Differ. Equations, 102, 153-187 (1993) · Zbl 0780.34026 · doi:10.1006/jdeq.1993.1026
[60] Yagasaki, K., Invariant manifolds and control of hyperbolic trajectories on infinite- or finite-time intervals, Dyn. Syst., 23, 309-331 (2008) · Zbl 1166.37006 · doi:10.1080/14689360802263571
[61] Haller, G.; Poje, A., Finite time transport in aperiodic flows, Physica. D, 119, 352-380 (1998) · Zbl 1194.76089 · doi:10.1016/S0167-2789(98)00091-8
[62] Miller, P.; Pratt, L.; Helfrich, K.; Jones, C., Chaotic transport of mass and potential vorticity for an island recirculation, J. Phys. Oceanogr., 32, 80-102 (2002) · doi:10.1175/1520-0485(2002)032<0080:CTOMAP>2.0.CO;2
[63] Melnikov, V. K., On the stability of the centre for time-periodic perturbations, Trans. Moscow Math. Soc., 12, 1-56 (1963) · Zbl 0135.31001
[64] Balasuriya, S., Direct chaotic flux quantification in perturbed planar flows: General time-periodicity, SIAM J. Appl. Dyn. Syst., 4, 282-311 (2005) · Zbl 1136.34312 · doi:10.1137/040603243
[65] Conlisk, K.; O’Connor, G., Analysis of passive microfluidic mixers incorporating 2D and 3D baffle geometries fabricated using an excimer laser, Microfluid. Nanofluid., 12, 941-951 (2012) · doi:10.1007/s10404-011-0928-9
[66] Balasuriya, S.; Padberg-Gehle, K., Controlling the unsteady analogue of saddle stagnation points, SIAM J. Appl. Math., 73, 1038-1057 (2013) · Zbl 1279.34073 · doi:10.1137/120886042
[67] Balasuriya, S.; Padberg-Gehle, K., Accurate control of hyperbolic trajectories in any dimension, Phys. Rev. E, 90, 032903 (2014) · doi:10.1103/PhysRevE.90.032903
[68] Balasuriya, S.; Padberg-Gehle, K., Nonautonomous control of stable and unstable manifolds in two-dimensional flows, Physica D, 276, 48-60 (2014) · Zbl 1341.93043 · doi:10.1016/j.physd.2014.03.003
[69] Balasuriya, S., Explicit invariant manifolds and specialised trajectories in a class of unsteady flows, Phys. Fluids, 24, 127101 (2012) · Zbl 1309.76044 · doi:10.1063/1.4769979
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.