×

Non-conformable integral inequalities of Chebyshev-Pólya-Szegö type. (English) Zbl 1489.26005

Summary: Inequality studies involving new integrals and derivatives have been carried out recently. This article designed as follows, the results were obtained by using the non-conformable fractional integral operators to provide new inequalities of Polya-Szegö and Chebyshev type. Some special cases have been considered for our mainfindings.

MSC:

26A33 Fractional derivatives and integrals
26D10 Inequalities involving derivatives and differential and integral operators
26D15 Inequalities for sums, series and integrals
Full Text: DOI

References:

[1] P. M. GUZMAN, G. LANGTON, L. L. MOTTA, J. MEDINA ANDJ. E. NAPOLESV.,A New definition of a fractional derivative of local type, J. Math. Anal. 9 (2) (2018), 88-98.
[2] J. E. NAPOLESVALDES, P. M. GUZMAN, L. M. LUGO,Some New Results on Non-conformable Fractional Calculus, Adv. Dyn. Syst. Appl. 2018, 13, 167-175.
[3] J. E. NAPOLESVALDES, J. M RODRIGUEZ, J. M. SIGARRETA,New Hermite-Hadamard Type Inequalities Involving Non-Conformable Integral Operators, Symmetry 11 (9): 1108, 2019.
[4] P. L. CHEBYSHEV,Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites, Proc. Math. Soc. Charkov2(1882), 93-98.
[5] Z. DAHMANI, O. MECHOUAR, S. BRAHAMI,Certain inequalities related to the Chebyshev functional involving a type Riemann-Liouville operator, Bull. Math. Anal. Appl.3(2011), 38-44. · Zbl 1314.26030
[6] G. P ´OLYA, G. SZEGO¨,Aufgaben und Lehrsatze aus der Analysis, Band 1, Die Grundlehren der mathmatischen, Wissenschaften 19, J. Springer, Berlin, 1925.
[7] S. S. DRAGOMIR, N. T. DIAMOND,Integral inequalities of Gr¨uss type via Polya-Szeg¨o and ShishaMond results, East Asian Math. J.19(2003), 27-39. · Zbl 1047.26013
[8] I. PODLUBNY,Fractional Differential Equations, Mathematics in Science and Enginering, 198, Academic Press, New York, London, Tokyo and Toronto, 1999. · Zbl 0924.34008
[9] A. A. KILBAS, H. M. SRIVASTAVA, J. J. TRUJILLO,Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B. V., Amsterdam, 2006. · Zbl 1092.45003
[10] S. K. NTOUYAS, P. AGARWAL, J. TARIBOON,On Polya-Szeg¨o and Chebyshev type inequalities involving the Riemann-Liouville fractional integral operators, J. Math. Inequal.10(2016), 491-504. · Zbl 1337.26034
[11] E. SET ANDB. C¸ELIK,Certain Hermite-Hadamard type inequalities associated with conformable fractional integral operators, Creative Math. Inform.26(2017), 321-330. · Zbl 1413.26015
[12] E. SET, A. O. AKDEMIR, I. MUMCU,The Hermite-Hadamard’s inequaly and its extentions for conformable fractional integrals of any orderα>0 , Creative Math. Inform.27(2018), 197-206. · Zbl 1463.26069
[13] E. SET, A. G ¨OZPINAR, I. MUMCU,The Hermite-Hadamard Inequality for s-convex Functions in the Second Sense via Conformable Fractional Integrals and Related Inequalities, Thai J. Math., 2018.
[14] A. EKINCI ANDM. E. OZDEMIR,Some New Integral Inequalities Via Riemann Liouville Integral Operators, Applied and Computational Mathematics3(2019), 288-295. · Zbl 1434.26048
[15] Z. DAHMANI, L. TABHARIT, S. TAF,New generalisations of Gr¨uss inequality using RiemannLiouville fractional integrals, Bull. Math. Anal. Appl. 2 (3) (2010), 93-99. · Zbl 1312.26038
[16] S. M. KANG, G. FARID, W. NAZEER, B. TARIQ,Hadamard and Fej´er-Hadamard inequalities for extended generalized fractional integrals involving special functions, J. Ineq. Appl. 2018: 119 (2018), 1-11. · Zbl 1497.26029
[17] S. M. KANG, G. FARID, W. NAZEER, S. MEHMOOD,(h,m)-convex functions and associated fractional Hadamard and Fej´er-Hadamard inequalities via an extended generalized Mittag-Leffler function, J. Ineq. Appl. 2019: 78 (2019), 1-10. · Zbl 1499.26128
[18] G. RAHMAN, D. BALEANU, M. A. QURASHI, S. D. PUROHIT, S. MUBEEN, M. ARSHAD,The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl. 10 (2017), 4244- 4253. · Zbl 1412.33039
[19] T. O. SALIM, A. W. FARAJ,A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl. 3 (5) (2012), 1-13. · Zbl 1488.33067
[20] M. Z. SARIKAYA, M. E. KIRIS¸,OnCebyˇˇsev-Gr¨uss type inequalities for double integrals, TJMM, 7 (1) (2015), 75-83. · Zbl 1347.26046
[21] E. SET, M. Z. SARIKAYA,On the generalization of Ostrowski and Gr¨uss type discrete inequalities, Comput. Math. Appl. 62 (1) (2011), 455-461. · Zbl 1228.26029
[22] H. M. SRIVASTAVA, Z. TOMOVSKI,Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput. 211 (2009), 198-210. · Zbl 1432.30022
[23] J. V. C. SOUSA, D. S. OLIVEIRA, E. C. OLIVEIRA,Gr¨uss type inequality by mean of a fractional integral, J. Math. Anal. and Appl. (2017), 1-16.
[24] F. A. ALIEV, N. A. ALIEV ANDN. A. SAFAROVA,Transformation of the Mittag-Leffler function to an exponential function and some of its applications to problems with a fractional derivative, Applied and Computational Mathematics, v. 18, n. 3, 2019, pp. 316-325. · Zbl 1434.33025
[25] T. ABDELJAWAD,On conformable fractional calculus, Journal of Computational and Applied Mathematics 279 (2015), 57-66. · Zbl 1304.26004
[26] R. KHALIL, M. ALHORANI, A. YOUSEF ANDM. SABABHEH,A new defnition of fractional derivative, J. Comput. Appl. Math. (264) (2014), 65-70. · Zbl 1297.26013
[27] A. O. AKDEMIR, A. EKINCI ANDE. SET,Conformable Fractional Integrals and Related New Integral Inequalities, Journal of Nonlinear and Convex Analysis, Volume 18, Number 4, 2017, 661-674. · Zbl 1474.26073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.