×

Static elastic cloaking, low-frequency elastic wave transparency and neutral inclusions. (English) Zbl 1472.74121

Summary: New connections between static elastic cloaking, low-frequency elastic wave scattering and neutral inclusions (NIs) are established in the context of two-dimensional elasticity. A cylindrical core surrounded by a cylindrical shell is embedded in a uniform elastic matrix. Given the core and matrix properties, we answer the questions of how to select the shell material such that (i) it acts as a static elastic cloak, and (ii) it eliminates low-frequency scattering of incident elastic waves. It is shown that static cloaking (i) requires an anisotropic shell, whereas scattering reduction (ii) can be satisfied more simply with isotropic materials. Implicit solutions for the shell material are obtained by considering the core-shell composite cylinder as a neutral elastic inclusion. Two types of NI are distinguished, weak and strong with the former equivalent to low-frequency transparency and the classical Christensen and Lo generalized self-consistent result for in-plane shear from 1979. Our introduction of the strong NI is an important extension of this result in that we show that standard anisotropic shells can act as perfect static cloaks, contrasting previous work that has employed ‘unphysical’ materials. The relationships between low-frequency transparency, static cloaking and NIs provide the material designer with options for achieving elastic cloaking in the quasi-static limit.

MSC:

74J20 Wave scattering in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR. 2006 Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977-980. (doi:10.1126/science.1133628) · doi:10.1126/science.1133628
[2] Cai W, Chettiar UK, Kildishev AV, Shalaev VM. 2008 Optical cloaking with metamaterials. Nat. Photonics 1, 224-227. (doi:10.1038/nphoton.2007.28) · doi:10.1038/nphoton.2007.28
[3] Cummer SA, Schurig D. 2007 One path to acoustic cloaking. New J. Phys. 9, 45. (doi:10.1088/1367-2630/9/3/045) · doi:10.1088/1367-2630/9/3/045
[4] Norris AN. 2008 Acoustic cloaking theory. Proc. R. Soc. A 464, 2411-2434. (doi:10.1098/rspa.2008.0076) · Zbl 1186.74060 · doi:10.1098/rspa.2008.0076
[5] Sklan SR, Li B. 2018 Thermal metamaterials: functions and prospects. Natl Sci. Rev. 5, 138-141. (doi:10.1093/nsr/nwy005) · doi:10.1093/nsr/nwy005
[6] Climente A, Torrent D, Sanchez-Dehesa J. 2016 Analysis of flexural wave cloaks. AIP Adv. 6, 121704. (doi:10.1063/1.4968611) · doi:10.1063/1.4968611
[7] Zareei A, Alam M-R. 2017 Broadband cloaking of flexural waves. Phys. Rev. E 95, 063002. (doi:10.1103/PhysRevE.95.063002) · doi:10.1103/PhysRevE.95.063002
[8] Brun M, Guenneau S, Movchan AB. 2009 Achieving control of in-plane elastic waves. Appl. Phys. Lett. 94, 061903+. (doi:10.1063/1.3068491) · doi:10.1063/1.3068491
[9] Norris AN, Shuvalov AL. 2011 Elastic cloaking theory. Wave Motion 49, 525-538. (doi:10.1016/j.wavemoti.2011.03.002) · Zbl 1283.74024 · doi:10.1016/j.wavemoti.2011.03.002
[10] Nassar H, Chen YY, Huang GL. 2019 Isotropic polar solids for conformal transformation elasticity and cloaking. J. Mech. Phys. Solids 129, 229-243. (doi:10.1016/j.jmps.2019.05.002) · doi:10.1016/j.jmps.2019.05.002
[11] Nassar H, Chen YY, Huang GL. 2019 Polar metamaterials: a new outlook on resonance for cloaking applications. (http://arxiv.org/abs/1909.12437)
[12] Parnell WJ. 2012 Nonlinear pre-stress for cloaking from antiplane elastic waves. Proc. R. Soc. A 468, 563-580. (doi:10.1098/rspa.2011.0477) · Zbl 1364.74049 · doi:10.1098/rspa.2011.0477
[13] Norris AN, Parnell WJ. 2012 Hyperelastic cloaking theory: transformation elasticity with prestressed solids. Proc. R. Soc. A 468, 2881-2903. (doi:10.1098/rspa.2012.0123) · Zbl 1371.74039 · doi:10.1098/rspa.2012.0123
[14] Sklan SR, Pak RYS, Li B. 2018 Seismic invisibility: elastic wave cloaking via symmetrized transformation media. New J. Phys. 20, 063013. (doi:10.1088/1367-2630/aac7ab) · doi:10.1088/1367-2630/aac7ab
[15] Colquitt DJ, Brun M, Gei M, Movchan AB, Movchan NV, Jones IS. 2014 Transformation elastodynamics and cloaking for flexural waves. J. Mech. Phys. Solids 72, 131-143. (doi:10.1016/j.jmps.2014.07.014) · Zbl 1328.74055 · doi:10.1016/j.jmps.2014.07.014
[16] Liu Y, Ma Z, Su X. 2016 Linear transformation method to control flexural waves in thin plates. J. Acoust. Soc. Am. 140, 1154-1161. (doi:10.1121/1.4961005) · doi:10.1121/1.4961005
[17] Kadic M M, Wegener M, Nicolet A, Zolla F, Guenneau S, Diatta A. 2020 Elastodynamic behavior of mechanical cloaks designed by direct lattice transformations. Wave Motion 92, 102419. (doi:10.1016/j.wavemoti.2019.102419) · Zbl 1524.74353 · doi:10.1016/j.wavemoti.2019.102419
[18] Hashin Z. 1962 The elastic moduli of heterogeneous materials. J. Appl. Mech. 29, 143-150. (doi:10.1115/1.3636446) · Zbl 0102.17401 · doi:10.1115/1.3636446
[19] Milton GW. 1981 Bounds on the complex permittivity of a two-component composite material. J. Appl. Phys. 52, 5286-5293. (doi:10.1063/1.329385) · doi:10.1063/1.329385
[20] Milton GW, Serkov SK. 2001 Neutral coated inclusions in conductivity and anti-plane elasticity. Proc. R. Soc. Lond. A 457, 1973-1997. (doi:10.1098/rspa.2001.0796) · Zbl 1090.74558 · doi:10.1098/rspa.2001.0796
[21] Milton GW. 2001 The theory of composites, 1st edn. Cambridge, UK: Cambridge University Press.
[22] Benveniste Y, Milton GW. 2003 New exact results for the effective electric, elastic, piezoelectric and other properties of composite ellipsoid assemblages. J. Mech. Phys. Solids 51, 1773-1813. (doi:10.1016/S0022-5096(03)00074-7) · Zbl 1077.74591 · doi:10.1016/S0022-5096(03)00074-7
[23] Jiménez S, Vernescu B, Sanguinet W. 2013 Nonlinear neutral inclusions: assemblages of spheres. Int. J. Solids Struct. 50, 2231-2238. (doi:10.1016/j.ijsolstr.2013.03.036) · doi:10.1016/j.ijsolstr.2013.03.036
[24] Wang X, Schiavone P. 2012 Neutral coated circular inclusions in finite plane elasticity of harmonic materials. Eur. J. Mech. A. Solids 33, 75-81. (doi:10.1016/j.euromechsol.2011.11.006) · Zbl 1348.74064 · doi:10.1016/j.euromechsol.2011.11.006
[25] Kang H, Lee H. 2014 Coated inclusions of finite conductivity neutral to multiple fields in two-dimensional conductivity or anti-plane elasticity. Eur. J. Appl. Math. 25, 329-338. (doi:10.1017/S0956792514000060) · Zbl 1302.74064 · doi:10.1017/S0956792514000060
[26] Bigoni D, Serkov SK, Valentini M, Movchan AB. 1998 Asymptotic models of dilute composites with imperfectly bonded inclusions. Int. J. Solids Struct. 35, 3239-3258. (doi:10.1016/S0020-7683(97)00366-1) · Zbl 0918.73042 · doi:10.1016/S0020-7683(97)00366-1
[27] Ru C-Q. 1998 Interface design of neutral elastic inclusions. Int. J. Solids Struct. 35, 559-572. (doi:10.1016/S0020-7683(97)00072-3) · Zbl 0931.74010 · doi:10.1016/S0020-7683(97)00072-3
[28] He Q-C. 2002 3D elastic neutral inclusions with imperfect interfaces. C.R. Mec. 330, 691-696. (doi:10.1016/S1631-0721(02)01520-6) · Zbl 1177.74098 · doi:10.1016/S1631-0721(02)01520-6
[29] Bertoldi K, Bigoni D, Drugan WJ. 2007 Structural interfaces in linear elasticity. Part II: effective properties and neutrality. J. Mech. Phys. Solids 55, 35-63. (doi:10.1016/j.jmps.2006.06.005) · Zbl 1171.74003 · doi:10.1016/j.jmps.2006.06.005
[30] Wang X, Schiavone P. 2012 Neutrality in the case of n-phase elliptical inclusions with internal uniform hydrostatic stresses. Int. J. Solids Struct. 49, 800-807. (doi:10.1016/j.ijsolstr.2011.11.016) · doi:10.1016/j.ijsolstr.2011.11.016
[31] Kang H. 2016 On coated inclusions neutral to bulk strain fields in two dimensions. (https://arxiv.org/abs/1601.04827) · Zbl 1362.35196
[32] Bückmann T, Thiel M, Kadic M, Schittny R, Wegener M. 2014 An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nature Comm. 5, 4130. (doi:10.1038/ncomms5130) · doi:10.1038/ncomms5130
[33] Christensen RM, Lo KH. 1979 Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27, 315-330. (doi:10.1016/0022-5096(79)90032-2) · Zbl 0419.73007 · doi:10.1016/0022-5096(79)90032-2
[34] Hashin Z. 1990 Thermoelastic properties and conductivity of carbon/carbon fiber composites. Mech. Mater. 8, 293-308. (doi:10.1016/0167-6636(90)90049-L) · doi:10.1016/0167-6636(90)90049-L
[35] Hervé E, Zaoui A. 1995 Elastic behaviour of multiply coated fibre-reinforced composites. Int. J. Engng. Sci. 33, 1419-1433. (doi:10.1016/0020-7225(95)00008-L) · Zbl 0899.73310 · doi:10.1016/0020-7225(95)00008-L
[36] Avery WB, Herakovich CT. 1986 Effect of fiber anisotropy on thermal stresses in fibrous composites. J. Appl. Mech. ASME 53, 751-756. (doi:10.1115/1.3171854) · Zbl 0606.73091 · doi:10.1115/1.3171854
[37] Chen T, Dvorak GJ, Benveniste Y. 1990 Stress fields in composites reinforced by coated cylindrically orthotropic fibers. Mech. Mater. 9, 17-32. (doi:10.1016/0167-6636(90)90027-D) · doi:10.1016/0167-6636(90)90027-D
[38] Benveniste Y, Dvorak GJ, Chen T. 1991 On effective properties of composites with coated cylindrically orthotropic fibers. Mech. Mater. 12, 289-297. (doi:10.1016/0167-6636(91)90025-U) · doi:10.1016/0167-6636(91)90025-U
[39] Charalambakis N. 2010 Homogenization techniques and micromechanics. a survey and perspectives. Appl. Mech. Rev. 63, 030803. (doi:10.1115/1.4001911) · Zbl 1393.74160 · doi:10.1115/1.4001911
[40] Zhou K, Hoh HJ, Wang X, Keer LM, Pang JHL, Song B, Wang QJ. 2013 A review of recent works on inclusions. Mech. Mater. 60, 144-158. (doi:10.1016/j.mechmat.2013.01.005) · doi:10.1016/j.mechmat.2013.01.005
[41] Parnell WJ. 2016 The Eshelby, Hill, Moment and Concentration tensors for ellipsoidal inhomogeneities in the Newtonian potential problem and linear elastostatics. J. Elasticity 125, 231-294. (doi:10.1007/s10659-016-9573-6) · Zbl 1353.31006 · doi:10.1007/s10659-016-9573-6
[42] Zhou X, Hu G, Lu T. 2008 Elastic wave transparency of a solid sphere coated with metamaterials. Phys. Rev. B 77, 024101. (doi:10.1103/PhysRevB.77.024101) · doi:10.1103/PhysRevB.77.024101
[43] Wu Y, Lai Y, Zhang Z-Q. 2007 Effective medium theory for elastic metamaterials in two dimensions. Phys. Rev. B 76, 205313. (doi:10.1103/PhysRevB.76.205313) · doi:10.1103/PhysRevB.76.205313
[44] Parnell WJ, Calvo-Jurado C. 2015 On the computation of the Hashin-Shtrikman bounds for transversely isotropic two-phase linear elastic fibre-reinforced composites. J. Engng. Math. 95, 295-323. (doi:10.1007/s10665-014-9777-3) · Zbl 1360.74024 · doi:10.1007/s10665-014-9777-3
[45] Berryman JG. 1980 Long wavelength propagation in composite elastic media I. Spherical inclusions. J. Acoust. Soc. Am. 68, 1809-1819. (doi:10.1121/1.385171) · Zbl 0455.73013 · doi:10.1121/1.385171
[46] Kantor Y, Bergman DJ. 1982 Elastostatic resonances - a new approach to the calculation of the effective elastic constants of composites. J. Mech. Phys. Solids 30, 355-376. (doi:10.1016/0022-5096(82)90005-9) · Zbl 0488.73067 · doi:10.1016/0022-5096(82)90005-9
[47] Christensen RM, Lo KH. 1986 Erratum: Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 34, 639. (doi:10.1016/0022-5096(86)90037-2) · doi:10.1016/0022-5096(86)90037-2
[48] Dassios G, Kleinman R. 2000 Low frequency scattering. Oxford, UK: Oxford University Press. · Zbl 0982.76002
[49] Lekhnitskii SG. 1963 Theory of elasticity of an anisotropic elastic body. San Francisco, CA: Holden-Day. · Zbl 0119.19004
[50] Shuvalov AL. 2003 A sextic formalism for three-dimensional elastodynamics of cylindrically anisotropic radially inhomogeneous materials. Proc. R. Soc. Lond. A 459, 1611-1639. (doi:10.1098/rspa.2002.1075) · Zbl 1058.74044 · doi:10.1098/rspa.2002.1075
[51] Tsukrov I, Drach B. 2010 Elastic deformation of composite cylinders with cylindrically orthotropic layers. Int. J. Solids Struct. 47, 25-33. (doi:10.1016/j.ijsolstr.2009.09.005) · Zbl 1193.74028 · doi:10.1016/j.ijsolstr.2009.09.005
[52] Tarn J-Q, Wang Y-M. 2001 Laminated composite tubes under extension, torsion, bending, shearing and pressuring: a state space approach. Int. J. Solids Struct. 38, 9053-9075. (doi:10.1016/S0020-7683(01)00170-6) · Zbl 1037.74016 · doi:10.1016/S0020-7683(01)00170-6
[53] Tarn J-Q. 2002 A state space formalism for anisotropic elasticity. Int. J. Solids Struct. 39, 5157-5172. (doi:10.1016/S0020-7683(02)00412-2) · Zbl 1087.74509 · doi:10.1016/S0020-7683(02)00412-2
[54] Norris AN, Shuvalov AL. 2010 Wave impedance matrices for cylindrically anisotropic radially inhomogeneous elastic materials. Q. J. Mech. Appl. Math. 63, 1-35. (doi:10.1093/qjmam/hbq010) · Zbl 1242.74038 · doi:10.1093/qjmam/hbq010
[55] Norris AN, Nagy AJ, Amirkulova FA. 2013 Stable methods to solve the impedance matrix for radially inhomogeneous cylindrically anisotropic structures. J. Sound Vib. 332, 2520-2531. (doi:10.1016/j.jsv.2012.12.016) · doi:10.1016/j.jsv.2012.12.016
[56] Higham NJ. 2008 Functions of matrices: theory and computation. Philadelphia, PA: SIAM. · Zbl 1167.15001
[57] Norris AN, Shuvalov AL, Kutsenko AA. 2013 The matrix sign function for solving surface wave problems in homogeneous and laterally periodic elastic half-spaces. Wave Motion 50, 1239-1250. (doi:10.1016/j.wavemoti.2013.03.010) · Zbl 1454.74078 · doi:10.1016/j.wavemoti.2013.03.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.