×

Position control of stewart manipulator using a new extended adaptive fuzzy sliding mode controller and observer (E-AFSMCO). (English) Zbl 1393.93071

Summary: Previously proposed Adaptive Fuzzy Sliding Mode Control (AFSMC) and Adaptive Fuzzy Sliding Mode Observer (AFSMO) methods are mixed and extended for the case of affine systems in which the input gain matrix is state-dependent, non-diagonal and non-positive definite. The proposed Extended AFSMCO (E-AFSMCO) method is then applied for position control of a Stewart Manipulator (SM), whose parameters are strongly state-dependent and complex and not suitable for practical control purposes. A robust observer-based control method which can work with a simplified model of the plant, and at the same time can preserve the stability and performance of the overall complex system is of great need. In this study, the SM dynamic model is simplified by removing the dynamic effects of the legs and the neglected terms are considered as unmodeled dynamics, for which the upper bound of the uncertainty is progressively estimated using the proposed adaptation rules. The final controller is comprised of a fuzzy controller in parallel with a robust switching controller. The second Lyapunov theorem is used to prove the closed-loop asymptotic stability. The proposed E-AFSMCO method is verified numerically and experimentally, depicting the effectiveness of the method for real-time industrial applications.

MSC:

93C42 Fuzzy control/observation systems
93B12 Variable structure systems
93D20 Asymptotic stability in control theory
93B35 Sensitivity (robustness)
93C85 Automated systems (robots, etc.) in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fichter, E. F., A stewart platform- based manipulator: general theory and practical construction, Int. J. Rob. Res., 5, 157-182, (1986)
[2] Merlet, J.-P., Force-feedback control of parallel kinematics manipulators, Kinematic and Dynamic Issues in Sensor Based Control, 143-158, (1990), Springer
[3] Sugimoto, K., Computational scheme for dynamic analysis of parallel manipulators, J. Mech. Trans. Autom. Des., 111, 29-33, (1989)
[4] Do, W. O.D.; Yang, D. C.I., Inverse dynamic analysis and simulation of a platform type of roboir, J. Robot. Syst., 5, 209-227, (1988) · Zbl 0667.70007
[5] Dasgupta, B.; Mruthyunjaya, T. S., A Newton-Euler formulation for the inverse dynamics of the stewart platform manipulator, Mech. Mach. Theory, 33, 1135-1152, (1998) · Zbl 1052.70529
[6] Lebret, G.; Liu, K., Dynamic analysis and control of a stewart platform manipulator, J. Robot. Syst., 10, 629-655, (1993) · Zbl 0774.70005
[7] Lopes, A. M., Dynamic modeling of a stewart platform using the generalized momentum approach, Commun. Nonlinear Sci. Numer. Simul., 14, 3389, (2009)
[8] Tsai, L.-W., Solving the inverse dynamics of a stewart-gough manipulator by the principle of virtual work, J. Mech. Des., 122, 3, (2000)
[9] Gallardo, J.; Rico, J. M.; Frisoli, A.; Checcacci, D.; Bergamasco, M., Dynamics of parallel manipulators by means of screw theory, Mech. Mach. Theory, 38, 1113-1131, (2003) · Zbl 1062.70560
[10] Liu, M.; Li, C.; Li, C., Dynamics analysis of the gough-stewart platform manipulator, IEEE Trans. Robot. Autom., 16, 94-98, (2000)
[11] Meng, Q.; Zhang, T.; He, J.; Song, J.; Han, J., Dynamic modeling of a 6-degree-of-freedom stewart platform driven by a permanent magnet synchronous motor, J. Zhejiang Univ. Sci. C, 11, 751-761, (2010)
[12] Staicu, S.; Zhang, D., A novel dynamic modelling approach for parallel mechanisms analysis, robot, Comput. Integr. Manuf., 24, 167-172, (2008)
[13] Liu, K.; Fitzgerald, J. M.; Lewis, F. L.; Member, S., Kinematic analysis of a stewart platform manipulator T, IEEE Trans. Ind. Electron., 40, 282-293, (1993)
[14] Hopkins, B. R.; Williams, R. L., Kinematics, design and control of the 6‐PSU platform, Ind. Robot Int. J. Robot. Res. Appl., 29, 443-451, (2002)
[15] Davliakos, I.; Papadopoulos, E., Model-based position tracking control for a 6 dof electrohydraulic stewart platform, (Proceedings of the Fifteenth Mediterranean Conference on Control and Automation, (2007), IEEE), 30-40
[16] Davliakos, I.; Papadopoulos, E., Impedance model-based control for an electrohydraulic stewart platform, Eur. J. Control, 15, 560-577, (2009) · Zbl 1298.93247
[17] Takemura, H.; Onodera, T.; Ming, D.; Mizoguchi, H., Design and control of a wearable stewart platform-type ankle-foot assistive device, Int. J. Adv. Robot. Syst., 9, (2012)
[18] Onodera, T.; Suzuki, E.; Ding, M.; Takemura, H.; Mizoguchi, H., Force, stiffness and viscous damping control of a stewart-platform-type ankle-foot rehabilitation assist device with pneumatic actuator, J. Robot. Mechatron., 25, 897-905, (2013)
[19] Kizir, S.; Bingül, Z., Fuzzy impedance and force control of a stewart platform, Turkish J. Electr. Eng. Comput. Sci., 22, 924-939, (2014)
[20] Meng, W.; De Zhou, Z.; Liu, Q.; Ai, Q. S., A practical fuzzy adaptive control strategy for multi-DOF parallel robot, Appl. Mech. Mater., 347, 661-665, (2013), Trans Tech Publ
[21] Lee, S.-H.; Song, J.-B.; Choi, W.-C.; Hong, D., Position control of a stewart platform using inverse dynamics control with approximate dynamics, Mechatronics, 13, 605-619, (2003)
[22] Garagić, D.; Srinivasan, K., Contouring control of stewart platform based machine tools, (Proceedings of the American Control Conference, (2004), IEEE), 3831-3838
[23] Iqbal, S.; Bhatti, AI.; Ahmed, Q., Dynamic analysis and robust control design for stewart platform with moving payloads, (Proceedings of the Seventeenth World Congress, (2008)), 5324-5329
[24] Chen, S. H.; Fu, L. C., Output feedback sliding mode control for a stewart platform with a nonlinear observer-based forward kinematics solution, IEEE Trans. Control Syst. Technol., 21, 176-185, (2013)
[25] Zubizarreta, A.; Marcos, M.; Cabanes, I.; Pinto, C., A procedure to evaluate extended computed torque control configurations in the stewart-gough platform, Rob. Auton. Syst., 59, 770-781, (2011)
[26] Omran, A.; Kassem, A., Optimal task space control design of a stewart manipulator for aircraft stall recovery, Aerosp. Sci. Technol., 15, 353-365, (2011)
[27] Ben Romdhane, N. M.; Damak, T., Control of robotic manipulator with integral sliding mode, J. Autom. Syst. Eng., 5, 185-198, (2011)
[28] Taylor, P.; Liu, R.; Li, S., Optimal integral sliding mode control scheme based on pseudospectral method for robotic manipulators, Int. J. Control, 87, 37-41, (2014)
[29] Dastgerdi, H. R.; Keshmiri, M., Design of length measuring system for stewart platform using new forward kinematics solution, (Proceedings of the Eleventh International Conference on Control Automation Robotics and Vision, ICARCV 2010, (2010), IEEE), 2339-2344
[30] Yunjie, W.; Weiting, L.; Youmin, L., Fuzzy sliding mode control based on optimal fuzzy reasoning and its application on simulator turntable, (Proceedings of the Asia Simulation Conference - Seventh International Conference on System Simulation and Scientific Computing, (2008), IEEE), 765-769
[31] Liu, Q.; Liu, D.; Meng, W.; Zhou, Z.; Ai, Q., Fuzzy sliding mode control of a multi-DOF parallel robot in rehabilitation environment, Int. J. Humanoid Robot., 11, (2014)
[32] Grewal, K. S.; Dixon, R.; Pearson, J., LQG controller design applied to a pneumatic stewart-gough platform, Int. J. Autom. Comput., 9, 45-53, (2012)
[33] Yime, E.; Saltaren, R.; Diaz, J., Robust adaptive control of the stewart-gough robot in the task space, (Proceedings of the American Control Conference (ACC), (2010)), 5248-5253
[34] Soltanpour, M. R.; Khooban, M. H.; Soltani, M., Robust fuzzy sliding mode control for tracking the robot manipulator in joint space and in presence of uncertainties, Robotica, 32, 433-446, (2014)
[35] Navabi, H.; Sadeghnejad, S.; Ramezani, S.; Baltes, J., Position control of the single spherical wheel mobile robot by using the fuzzy sliding mode controller, Adv. Fuzzy Syst., 2017, 1-10, (2017)
[36] Soltanpour, M. R.; Khooban, M. H.; Otadolajam, P., Robust control strategy for electrically driven robot manipulators: adaptive fuzzy sliding mode, IET Sci. Meas. Technol., 9, 322-334, (2015)
[37] Ho, H. F.; Wong, Y. K.; Rad, A. B., Simulation modelling practice and theory adaptive fuzzy sliding mode control with chattering elimination for nonlinear SISO systems, Simul. Model. Pract. Theory, 17, 1199-1210, (2009)
[38] Poursamad, A.; Davaie-Markazi, A. H., Robust adaptive fuzzy control of unknown chaotic systems, Appl. Soft Comput., 9, 970-976, (2009)
[39] Noroozi, N.; Roopaei, M.; Jahromi, M. Z., Adaptive fuzzy sliding mode control scheme for uncertain systems, Commun. Nonlinear Sci. Numer. Simul., 14, 3978-3992, (2009) · Zbl 1221.93155
[40] Poursamad, A.; Markazi, A. H.D. D., Adaptive fuzzy sliding-mode control for multi-input multi-output chaotic systems,, Chaos Solitons Fract., 42, 3100-3109, (2009) · Zbl 1198.93112
[41] Nekoukar, V.; Erfanian, A., Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems, Fuzzy Sets Syst, 179, 34-49, (2011) · Zbl 1235.93145
[42] Fei, J.; Zhou, J., Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator, IEEE Trans. Syst. Man, Cybern. Part B., 42, 1599-1607, (2012)
[43] Fei, J.; Ding, H., Adaptive sliding mode control of dynamic system using RBF neural network, Nonlinear Dyn., 70, 1563-1573, (2012)
[44] Fei, J.; Lu, C., Adaptive sliding mode control of dynamic systems using double loop recurrent neural network structure, IEEE Trans. Neural Netw. Learn. Syst., pp, 1-12, (2017)
[45] Chen, S. H.; Huang, C. I.; Fu, L. C., Applying a nonlinear observer to solve forward kinematics of a stewart platform, (Proceedings of the IEEE International Conference on Application Control, (2008), IEEE), 1183-1188
[46] Oveisi, A.; Nestorović, T., Robust observer-based adaptive fuzzy sliding mode controller, Mech. Syst. Signal Process., 76, 58-71, (2016)
[47] Gholami, A.; Markazi, A. H.D., A new adaptive fuzzy sliding mode observer for a class of MIMO nonlinear systems, Nonlinear Dyn., 70, 2095-2105, (2012)
[48] Maged, S. A.; El Bab, A. M.R. F.; Abouelsoud, A. A., An adaptive observer for a stewart platform manipulator using leg position and force measurements, Int. J. Model. Identif. Control, 24, 62, (2015)
[49] Veysi, M.; Soltanpour, M. R.; Khooban, M. H., A novel self-adaptive modified bat fuzzy sliding mode control of robot manipulator in presence of uncertainties in task space, Robotica, 33, 2045-2064, (2015)
[50] Niknam, T.; Khooban, M. H.; Kavousifard, A.; Soltanpour, M. R., An optimal type II fuzzy sliding mode control design for a class of nonlinear systems, Nonlinear Dyn., 75, 73-83, (2014)
[51] Soltanpour, M. R.; Khooban, M. H.; Khalghani, M. R., An optimal and intelligent control strategy for a class of nonlinear systems: adaptive fuzzy sliding mode, J. Vib. Control, 22, 159-175, (2016) · Zbl 1358.93077
[52] Khooban, M. H.; Niknam, T.; Dehghani, M.; Blaabjerg, F., Free chattering hybrid sliding mode control for a class of non-linear systems: electric vehicles as a case study, IET Sci. Meas. Technol., 10, 776-785, (2016)
[53] Wang, Z., Lyapunov-based control design for uncertain MIMO systems, (2011), University of Central Florida Orlando Florida
[54] Sastry, S. S.; Bodson, M., Adaptive control: stability, convergence, and robustness, (1989), Courier Corporation, N Chelmsford · Zbl 0721.93046
[55] Becerra-Vargas, M.; Morgado Belo, E., Application of H∞ theory to a 6 DOF flight simulator motion base, J. Brazilian Soc. Mech. Sci. Eng., 34, 193-204, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.