Gaffar, S. Abdul; Prasad, V. Ramachandra; Vijaya, Bhuvana; Beg, O. Anwar Mixed convection flow of magnetic viscoelastic polymer from a nonisothermal wedge with Biot number effects. (English) Zbl 1381.76401 Int. J. Eng. Math. 2015, Article ID 287623, 15 p. (2015). Summary: Magnetic polymers are finding increasing applications in diverse fields of chemical and mechanical engineering. In this paper, we investigate the nonlinear steady boundary layer flow and heat transfer of such fluids from a nonisothermal wedge. The incompressible Eyring-Powell non-Newtonian fluid model is employed and a magnetohydrodynamic body force is included in the simulation. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite difference Keller Box technique. The numerical code is validated with previous studies. The influence of a number of emerging nondimensional parameters, namely, the Eyring-Powell rheological fluid parameter (\(\varepsilon\)), local non-Newtonian parameter based on length scale (\(\delta\)), Prandtl number (Pr), Biot number (\(\gamma\)), pressure gradient parameter (\(m\)), magnetic parameter (\(M\)), mixed convection parameter (\(\lambda\)), and dimensionless tangential coordinate (\(\xi\)), on velocity and temperature evolution in the boundary layer regime is examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. Cited in 2 Documents MSC: 76W05 Magnetohydrodynamics and electrohydrodynamics 76T20 Suspensions 76R10 Free convection PDF BibTeX XML Cite \textit{S. A. Gaffar} et al., Int. J. Eng. Math. 2015, Article ID 287623, 15 p. (2015; Zbl 1381.76401) Full Text: DOI OpenURL References: [1] Bossis, G.; Volkova, O.; Lacis, S.; Meunier, A.; Odenbach, S., Magnetorheology: fluids, structures and rheology, Ferrofluids: Magnetically Controllable Fluids and Their Applications, Lecture Notes in Physics, 594, 202-230, (2002), Springer, Berlin, Germany [2] Rodríguez-López, J.; Shum, H. C.; Elvira, L.; de Espinosa, F. M.; Weitz, D. A., Fabrication and manipulation of polymeric magnetic particles with magnetorheological fluid, Journal of Magnetism and Magnetic Materials, 326, 220-224, (2013) [3] Fu, S.-F.; Wang, X.-Z., Effects of magnetic field on shear stress of nematic liquid crystalline polymer under simple shear flow, Journal of Polymer Science B: Polymer Physics, 48, 17, 1919-1926, (2010) [4] Shaw, M. T., Introduction to Polymer Rheology, (2012), Wiley, New York, NY, USA [5] Sato, S.; Oka, K.; Murakami, A., Heat transfer behavior of melting polymers in laminar flow field, Polymer Engineering & Science, 44, 3, 423-432, (2004) [6] Ishak, A., Similarity solutions for flow and heat transfer over a permeable surface with convective boundary condition, Applied Mathematics and Computation, 217, 2, 837-842, (2010) · Zbl 1432.76090 [7] Aziz, A., A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition, Communications in Nonlinear Science and Numerical Simulation, 14, 4, 1064-1068, (2009) [8] Aziz, A., Hydrodynamic and thermal slip flow boundary layers over a flat plate with constant heat flux boundary condition, Communications in Nonlinear Science and Numerical Simulation, 15, 3, 573-580, (2010) [9] Makinde, O. D.; Olanrewaju, P. O., Combined effects of internal heat generation and buoyancy force on boundary layer flow over a vertical plate with a convective surface boundary condition, Canadian Journal of Chemical Engineering, 90, 5, 1289-1294, (2012) [10] Gupta, D.; Kumar, L.; Anwar Bég, O.; Singh, B., Finite element simulation of mixed convection flow of micropolar fluid over a shrinking sheet with thermal radiation, Proceedings of the Institution of Mechanical Engineers Part E: Journal of Process Mechanical Engineering, 228, 1, 61-72, (2014) [11] Swapna, G.; Kumar, L.; Anwar Bég, O.; Singh, B., Effect of thermal radiation on the mixed convection flow of a magneto-micropolar fluid past a continuously moving plate with a convective surface boundary condition, Journal of Engineering Thermophysics [12] Makinde, O. D.; Zimba, K.; Bég, O. A., Numerical study of chemically-reacting hydromagnetic boundary layer flow with soret/dufour effects and a convective surface boundary condition, International Journal of Thermal and Environmental Engineering, 4, 1, 89-98, (2012) [13] Bég, O. A.; Uddin, M. J.; Rashidi, M. M.; Kavyani, N., Double-diffusive radiative magnetic mixed convective slip flow with Biot and Richardson number effects, Journal of Engineering Thermophysics, 23, 2, 79-97, (2014) [14] Subhashini, S. V.; Samuel, N.; Pop, I., Double-diffusive convection from a permeable vertical surface under convective boundary condition, International Communications in Heat and Mass Transfer, 38, 9, 1183-1188, (2011) [15] Powell, R. E.; Eyring, H., Mechanisms for the relaxation theory of viscosity, Nature, 154, 3909, 427-428, (1944) [16] Hayat, T.; Asad, S.; Mustafa, M.; Alsaedi, A., Radiation effects on the flow of powell-Eyring fluid past an unsteady inclined stretching sheet with non-uniform heat source/sink, PLoS ONE, 9, 7, (2014) [17] Sirohi, V.; Timol, M. G.; Kalathia, N. L., Numerical treatment of powell-Eyring fluid flow past a 90 degree wedge, Regional Journal of Energy, Heat and Mass Transfer, 6, 3, 219-228, (1984) [18] Adesanya, O.; Gbadeyan, J. A., Adomian decomposition approach to steady viscoelastic fluid flow with slip through a planar channel, International Journal of Nonlinear Science, 9, 86-94, (2010) · Zbl 1325.76021 [19] Prasad, V. R.; Gaffar, S. A.; Reddy, E. K.; Bég, O. A., Computational study of non-Newtonian thermal convection from a vertical porous plate in a non-Darcy porous medium with Biot number effects, Journal of Porous Media, 17, 7, 601-622, (2014) [20] Rosenhead, L., Laminar Boundary Layers, (1963), Oxford University Press, Oxford, UK · Zbl 0115.20705 [21] Peddieson, J., Wedge and cone flows of viscoelastic liquids, AIChE Journal, 19, 2, 377-379, (1973) [22] Sparrow, E. M.; Eichhorn, R.; Gregg, J. L., Combined forced and free convection in a boundary layer flow, Physics of Fluids, 2, 319-328, (1959) · Zbl 0086.40601 [23] Watanabe, T.; Funazaki, K.; Taniguchi, H., Theoretical analysis on mixed convection boundary layer flow over a wedge with uniform suction or injection, Acta Mechanica, 105, 1-4, 133-141, (1994) · Zbl 0814.76077 [24] Kafoussias, N. G.; Nanousis, N. D., Magnetohydrodynamic laminar boundary-layer flow over a wedge with suction or injection, Canadian Journal of Physics, 75, 10, 733-745, (1997) [25] Nanousis, N. D., Theoretical magnetohydrodynamic analysis of mixed convection boundary-layer flow over a wedge with uniform suction or injection, Acta Mechanica, 138, 1-2, 21-30, (1999) · Zbl 0954.76096 [26] Gorla, R. S. R., Unsteady heat transfer in laminar non-Newtonian boundary layer over a wedg, AIChE Journal, 28, 1, 56-60, (1982) [27] Yih, K.-A., Radiation effect on mixed convection over an isothermal wedge in porous media: the entire regime, Heat Transfer Engineering, 22, 3, 26-32, (2001) [28] Rashidi, M. M.; Rastegari, M. T.; Asadi, M.; Bég, O. A., A study of non-Newtonian flow and heat transfer over a non-isothermal wedge using the homotopy analysis method, Chemical Engineering Communications, 199, 2, 231-256, (2012) [29] Chamkha, A. J.; Mujtaba, M.; Quadri, A.; Issa, C., Thermal radiation effects on MHD forced convection flow adjacent to a non-isothermal wedge in the presence of a heat source or sink, Heat and Mass Transfer, 39, 4, 305-312, (2003) [30] Hsiao, K.-L., MHD mixed convection for viscoelastic fluid past a porous wedge, International Journal of Non-Linear Mechanics, 46, 1, 1-8, (2011) [31] Ishak, A.; Nazar, R.; Pop, I., Moving wedge and flat plate in a micropolar fluid, International Journal of Engineering Science, 44, 18-19, 1225-1236, (2006) · Zbl 1213.76016 [32] Ishak, A.; Nazar, R.; Pop, I., Moving wedge and flat plate in a power-law fluid, International Journal of Non-Linear Mechanics, 46, 8, 1017-1021, (2011) [33] Keller, H. B., Numerical methods in boundary-layer theory, Annual Review of Fluid Mechanics, 10, 417-433, (1978) [34] Anwar Bég, O., Numerical methods for multi-physical magnetohydrodynamics, New Developments in Hydrodynamics Research, 1-112, (2012), Nova Science, New York, NY, USA [35] Lok, Y. Y.; Pop, I.; Ingham, D. B., Oblique stagnation slip flow of a micropolar fluid, Meccanica, 45, 2, 187-198, (2010) · Zbl 1258.76023 [36] Chang, T.-B.; Mehmood, A.; Bég, O. A.; Narahari, M.; Islam, M. N.; Ameen, F., Numerical study of transient free convective mass transfer in a walters-B viscoelastic flow with wall suction, Communications in Nonlinear Science and Numerical Simulation, 16, 1, 216-225, (2011) · Zbl 1221.76028 [37] Srinivasacharya, D.; Kaladhar, K., Mixed convection flow of couple stress fluid in a non-Darcy porous medium with soret and dufour effects, Journal of Applied Science and Engineering, 15, 4, 415-422, (2012) [38] Gaffar, S. A.; Prasad, V. R.; Bég, O. A., Computational analysis of magnetohydrodynamic free convection flow and heat transfer of non-Newtonian tangent hyperbolic fluid from a horizontal circular cylinder with partial slip, International Journal of Applied and Computational Mathematics, (2015) [39] Prasad, V. R.; Gaffar, S. A.; Bég, O. A., Heat and mass transfer of nanofluid from horizontal cylinder to micropolar fluid, Journal of Thermophysics and Heat Transfer, 29, 1, 127-139, (2015) [40] Prasad, V. R.; Gaffar, S. A.; Reddy, E. K.; Bég, O. A., Numerical study of non-Newtonian boundary layer flow of Jeffreys fluid past a vertical porous plate in a non-Darcy porous medium, International Journal of Computational Methods in Engineering Science and Mechanics, 15, 4, 372-389, (2014) [41] Darji, R. M.; Timol, M. G., On invariance analysis of MHD boundary layer equations for non-Newtonian williamson fluids, International Journal of Advances in Applied Mathematics and Mechanics, 1, 10-19, (2014) · Zbl 1359.76333 [42] Singh, V.; Agarwal, S., Flow and heat transfer of Maxwell fluid with variable viscosity and thermal conductivity over an exponentially stretching sheet, American Journal of Fluid Dynamics, 3, 4, 87-95, (2013) [43] Nakamura, S., Applied Numerical Methods and Software, (1995), Prentice-Hall, New York, NY, USA [44] Bég, O. A.; Bég, T. A.; Takhar, H. S.; Raptis, A., Mathematical and numerical modeling of non-Newtonian thermo-hydrodynamic flow in non-Darcy porous media, International Journal of Fluid Mechanics Research, 31, 1, 1-12, (2004) [45] Pop, I.; Nakamura, S., Laminar boundary layer flow of power-law fluids over wavy surfaces, Acta Mechanica, 115, 1-4, 55-65, (1996) · Zbl 0859.76005 [46] Gorla, R. S. R.; Slaouti, A.; Takhar, H. S., Free convection in micropolar fluids over a uniformly heated vertical plate, International Journal of Numerical Methods for Heat & Fluid Flow, 8, 5-6, 504-518, (1998) · Zbl 0953.76082 [47] Bég, O. A.; Prasad, V. R.; Vasu, B., Numerical study of mixed bioconvection in porous media saturated with nanofluid containing oxytactic microorganisms, Journal of Mechanics in Medicine and Biology, 13, 4, (2013) [48] Anwar Bég, O.; Zueco, J.; Norouzi, M.; Davoodi, M.; Joneidi, A. A.; Elsayed, A. F., Network and nakamura tridiagonal computational simulation of electrically-conducting biopolymer micro-morphic transport phenomena, Computers in Biology and Medicine, 44, 1, 44-56, (2014) [49] Yacob, N. A.; Ishak, A.; Pop, I., Falkner-Skan problem for a static or moving wedge in nanofluids, International Journal of Thermal Sciences, 50, 2, 133-139, (2011) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.