Ji, Tianfu; Hou, Jianhua; Yang, Changqing Numerical solution of the Bagley-Torvik equation using shifted Chebyshev operational matrix. (English) Zbl 1487.65103 Adv. Difference Equ. 2020, Paper No. 648, 14 p. (2020). MSC: 65L60 34A08 65L70 PDF BibTeX XML Cite \textit{T. Ji} et al., Adv. Difference Equ. 2020, Paper No. 648, 14 p. (2020; Zbl 1487.65103) Full Text: DOI
Fazli, Hossein; Nieto, Juan J. An investigation of fractional Bagley-Torvik equation. (English) Zbl 1425.34010 Open Math. 17, 499-512 (2019). MSC: 34A08 34A12 PDF BibTeX XML Cite \textit{H. Fazli} and \textit{J. J. Nieto}, Open Math. 17, 499--512 (2019; Zbl 1425.34010) Full Text: DOI
Mohammadi, Fakhrodin An efficient fractional-order wavelet method for fractional Volterra integro-differential equations. (English) Zbl 1499.65285 Int. J. Comput. Math. 95, No. 12, 2396-2418 (2018). MSC: 65L05 26A33 34K37 45J05 65T60 PDF BibTeX XML Cite \textit{F. Mohammadi}, Int. J. Comput. Math. 95, No. 12, 2396--2418 (2018; Zbl 1499.65285) Full Text: DOI
Secer, Aydin; Altun, Selvi A new operational matrix of fractional derivatives to solve systems of fractional differential equations via Legendre wavelets. (English) Zbl 1417.65146 Mathematics 6, No. 11, Paper No. 238, 16 p. (2018). Reviewer: Deshna Loonker (Jodhpur) MSC: 65L60 34A08 65T60 PDF BibTeX XML Cite \textit{A. Secer} and \textit{S. Altun}, Mathematics 6, No. 11, Paper No. 238, 16 p. (2018; Zbl 1417.65146) Full Text: DOI
Zahra, W. K.; Van Daele, M. Discrete spline methods for solving two point fractional Bagley-Torvik equation. (English) Zbl 1411.65098 Appl. Math. Comput. 296, 42-56 (2017). MSC: 65L12 34A08 65L20 65L60 65L70 PDF BibTeX XML Cite \textit{W. K. Zahra} and \textit{M. Van Daele}, Appl. Math. Comput. 296, 42--56 (2017; Zbl 1411.65098) Full Text: DOI
Mohammadi, Fakhrodin; Ciancio, Armando Wavelet-based numerical method for solving fractional integro-differential equation with a weakly singular kernel. (English) Zbl 1412.47020 Wavel. Linear Algebra 4, No. 1, 53-73 (2017). MSC: 65R20 45K05 65T60 42C40 35R11 PDF BibTeX XML Cite \textit{F. Mohammadi} and \textit{A. Ciancio}, Wavel. Linear Algebra 4, No. 1, 53--73 (2017; Zbl 1412.47020)
Karaaslan, Mehmet Fatih; Celiker, Fatih; Kurulay, Muhammet Approximate solution of the Bagley-Torvik equation by hybridizable discontinuous Galerkin methods. (English) Zbl 1410.65253 Appl. Math. Comput. 285, 51-58 (2016). MSC: 65L05 34A08 PDF BibTeX XML Cite \textit{M. F. Karaaslan} et al., Appl. Math. Comput. 285, 51--58 (2016; Zbl 1410.65253) Full Text: DOI
Mohammadi, Fakhrodin; Mohyud-Din, Syed Tauseef A fractional-order Legendre collocation method for solving the Bagley-Torvik equations. (English) Zbl 1422.65137 Adv. Difference Equ. 2016, Paper No. 269, 14 p. (2016). MSC: 65L60 65L10 34A08 PDF BibTeX XML Cite \textit{F. Mohammadi} and \textit{S. T. Mohyud-Din}, Adv. Difference Equ. 2016, Paper No. 269, 14 p. (2016; Zbl 1422.65137) Full Text: DOI
Mohammadi, Fakhrodin Second kind Chebyshev wavelet Galerkin method for stochastic Itô-Volterra integral equations. (English) Zbl 1359.65015 Mediterr. J. Math. 13, No. 5, 2613-2631 (2016). Reviewer: Melvin D. Lax (Long Beach) MSC: 65C30 65T60 60H20 60H35 45R05 PDF BibTeX XML Cite \textit{F. Mohammadi}, Mediterr. J. Math. 13, No. 5, 2613--2631 (2016; Zbl 1359.65015) Full Text: DOI