Dockhorn, Alexander; Kruse, Rudolf Fuzzy modeling in game AI. (English) Zbl 1491.68233 TWMS J. Pure Appl. Math. 12, No. 1, 54-68 (2021). Summary: In this survey, we outline the impact fuzzy set theory had on artificial intelligence in games. Therefore, we will review fuzzy set related achievements in research and industrial applications alike. We will specifically address such topics as fuzzy game theory, fuzzy data analysis for real games, and the development of game AI agents using fuzzy models. MSC: 68T37 Reasoning under uncertainty in the context of artificial intelligence 68T42 Agent technology and artificial intelligence 91A86 Game theory and fuzziness Keywords:fuzzy game theory; fuzzy data analysis; fuzzy modeling; game AI; believable agents PDF BibTeX XML Cite \textit{A. Dockhorn} and \textit{R. Kruse}, TWMS J. Pure Appl. Math. 12, No. 1, 54--68 (2021; Zbl 1491.68233) Full Text: Link References: [1] Acampora, G., (2010), Exploiting timed automata-based fuzzy controllers and data mining to detect computer network intrusions, Int. Conf. Fuzzy Syst., pp.1-8. [2] Acampora, G., and Loia, V., (2005), Fuzzy control interoperability and scalability for adaptive domotic framework, IEEE Trans. Ind. Inf., 1(2), pp.97-111. [3] Acampora, G., Loia, V., and Vitiello, A., (2010), Hybridizing fuzzy control and timed automata for modeling variable structure fuzzy systems, Intern. Conf. Fuzzy Syst., pp.1-8. [4] Acampora, G., Loia, V., and Vitiello, A., (2012), Improving game bot behaviours through timed emotional intelligence, Knowl.-Based Syst. 34. A Special Issue on Artificial Intelligence in Computer Games: AICG, pp.97-113. [5] Agapitos, A., Togelius, J., and Lucas, S.M., (2007), Evolving controllers for simulated car racing using object oriented genetic programming, Proc. 9th Ann. Conf. Gen. Evol. Comp. - GECCO’07, [6] Aha, D.W., Molineaux, M., and Ponsen, M., (2005), Learning to Win: Case-Based Plan Selection in a Real-Time Strategy Game, Case-Based Reasoning Research and Development, ed. by H. Mu˜noz- ´Avila, and F. Ricci. Berlin, Heidelberg: Springer Berlin Heidelberg, pp.5-20. [7] Amo, A.d., Montero, J., Biging, G., and Cutello, V., (2004), Fuzzy classification systems, Eur. J. Oper. Res., 156(2), pp.495-507. · Zbl 1056.90077 [8] Arfi, B., (2006), Linguistic fuzzy-logic social game of cooperation, Ration. Soc., 18(4), pp.471-537. [9] Aristidou, M., and Sarangi, S., (2006), Games in Fuzzy Environments, South. Econ. J., 72(3). 645p. [10] Aubin, J.-P., (1981), Cooperative fuzzy games, Math. Oper. Res., 6(1), pp.1-13. · Zbl 0496.90092 [11] Aumann, R.J., and Shapley, L.S., (1974), Values of Non-Atomic Games, Princeton University Press, 348p. · Zbl 0311.90084 [12] Bector, C.R., and Chandra, S., (2005), Fuzzy Mathematical Programming and Fuzzy Matrix Games, Springer-Verlag Berlin Heidelberg, 236p. · Zbl 1078.90071 [13] Bellman, R., Kalaba, R., and Zadeh, L., (Jan. 1966), Abstraction and pattern classification, J. Math. Anal. Appl., 13(1), pp.1-7. · Zbl 0134.15305 [14] Berthold, M.R., Borgelt, C., H¨oppner, F., and Klawonn, F., (2010), Guide to Intelligent Data Analysis, Texts in Computer Science. London: Springer London, 399p. [15] Bezdek, J.C., Ehrlich, R., and Full, W., (1984), FCM: The fuzzy c-means clustering algorithm, Comp. & Geosci, 10(2-3), pp.191-203. [16] Billot, A., (1995), Fuzzy Games, Economic Theory of Fuzzy Equilibria, Springer Berlin Heidelberg, pp.63-103. · Zbl 0861.90017 [17] Billot, A., (1998), Elements of Fuzzy Game Theory, The Handbooks of Fuzzy Sets Series, Springer US, pp.137-176. · Zbl 0929.91002 [18] Borkotokey, S., (2008), Cooperative games with fuzzy coalitions and fuzzy characteristic functions, Fuzzy Sets Syst., 159(2), pp.138-151. · Zbl 1168.91311 [19] Borkotokey, S., Hazarika, P., and Mesiar, R., (2019), Cooperative games with multiple attributes, Int. J. Gen. Syst., 48(8), pp.825-842. [20] Borkotokey, S., and Mesiar, R., (2013), The Shapley value of cooperative games under fuzzy settings: a survey, Int. J of Gen. Syst., 43(1), pp.75-95. · Zbl 1285.91007 [21] Buckley, J.J., and Jowers, L.J., (2007), Fuzzy Two-Person Zero-Sum Games, Monte Carlo Methods in Fuzzy Optimization, Springer Berlin Heidelberg, pp.165-173. [22] Buckley, J., (1984), Multiple goal non-cooperative conflicts under uncertainty: a fuzzy set approach, Fuzzy Sets Syst, 13(2), pp.107-124. · Zbl 0549.90095 [23] Butnariu, D., (1978), Fuzzy games: A description of the concept, Fuzzy Sets Syst., 1(3), pp.181-192. · Zbl 0389.90100 [24] Butnariu, D., and Klement, E.P., (1993), Triangular Norm-Based Measures and Games with Fuzzy Coalitions, Springer Netherlands, 202p. · Zbl 0804.90145 [25] Cadena, P., and Garrido, L., (2011), Fuzzy Case-Based Reasoning for Managing Strategic and Tactical Reasoning in StarCraft, In: Batyrshin, I.Z., Sidorov, G. (eds.), Advances in Artificial Intelligence. MICAI (1), Lecture Notes in Computer Science, 7094, pp.113-124, Springer, Berlin, Heidelberg, [26] Cai, Y., Miao, C., Tan, A.-H., and Shen, Z., (2008), Context modeling with Evolutionary Fuzzy Cognitive Map in interactive storytelling, 2008 IEEE Intern. Conf. Fuzzy Syst. (IEEE World Congr. Comp. Intell.), IEEE. [27] Campos, L., (1989), Fuzzy linear programming models to solve fuzzy matrix games, Fuzzy Sets Syst., 32(3), pp.275-289. · Zbl 0675.90098 [28] Carpenter, G.A. et al., (1992), Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps, IEEE Trans. Neural Netw., 3(5), pp.698-713. [29] Chen, M., Lam, H.K., Shi, Q., and Xiao, B., (2020), Reinforcement Learning-Based Control of Nonlinear Systems Using Lyapunov Stability Concept and Fuzzy Reward Scheme, IEEE Trans. Circuits Syst. II: Express Briefs, 67(10), pp.2059-2063. [30] Cirovic, N., and Cirovic, Z., (2019), One application of fuzzy metrics in k-NN classifier, Proc. 4th Conf. Math. Eng.: Theory Appl., Novi Sad, pp.1-5. [31] Couso, I., Borgelt, C., Hullermeier, E., and Kruse, R., (2019), Fuzzy Sets in Data Analysis: From Statistical Foundations to Machine Learning, IEEE Comp. Intell. Mag., 14(1), pp.31-44. [32] Csikszentmihalyi, M., (2000), Beyond Boredom and Anxiety - Experiencing Flow in Work and Play, Anniversary Edition. San Francisco: John Wiley & Sons, 272p. [33] Da Silva, A.R., and Goes, L.F.W., (2018), HearthBot: An autonomous agent based on fuzzy ART adaptive neural networks for the digital collectible card game HearthStone, IEEE Trans. Games, [34] Delgado-Mata, C., and Ib´a˜nez, J., (2012), Air hockey iOS game that uses fuzzy-logic for gamebalancing, Proc. - 2012 Conf. Techn. Appl. Artif. Intell., TAAI 2012, pp.272-277. [35] DeLooze, L.L., and Viner, W.R., (2009), Fuzzy Q-learning in a nondeterministic environment: developing an intelligent Ms. Pac-Man agent, 2009 IEEE Symp. Comp. Intell. Games, pp.162-169. [36] Dhanji, P.K., and Singh, S.K., (2018), Fuzzy cognitive maps based game balancing system in real time, Indones. J. Electr. Eng. Comp. Sci., 9(2), pp.335-341. [37] Dockhorn, A., (2020), Prediction-Based Search for Autonomous Game-Playing, Dissertation, Magdeburg, 223p. [38] Dockhorn, A., and Kruse, R., (2020), Predicting cards using a fuzzy multiset clustering of decks, Int. J. Comp. Intell. Syst., 13(1), pp.1207-1217. [39] Dockhorn, A., and Mostaghim, S., (2019), Introducing the Hearthstone-AI Competition, preprint. [40] Dockhorn, A., Schwensfeier, T., and Kruse, R., (2019), Fuzzy Multiset Clustering for Metagame Analysis, Proc. 2019 Conf. Intern. Fuzzy Syst. Assoc. Europ. Soc. Fuzzy Log. Techn. (EUSFLAT [41] Drijvers, T., (2018), Hearthstone: finding the optimal play, MA thesis. Department of Telecommunications and Information Processing: Ghent University. [42] Ellis, G.D., Voelkl, J.E., and Morris, C., (1994), Measurement and analysis issues with explanation of variance in daily experience using the flow model, J. Leisure Res., 26(4), pp.337-356. [43] Esparcia-Alc´azar, A.I. et al., (2010), Controlling bots in a First Person Shooter game using genetic algorithms, IEEE Congr. Evol. Comp., pp.1-8. [44] Esparcia-Alcaz´ar, A.I. et al., (2010), Genetic evolution of fuzzy finite state machines to control bots in a first-person shooter game, Proc. 12th Ann. Conf. Gen. Evol. Comp. - GECCO ’10, ACM Press. [45] Etlik, U.B., Korkmaz, B., Beke, A., and Kumbasar, T., (2019), A fuzzy logic-based autonomous car control system for the JavaScript Racer game, Trans. Inst. Meas. Control, 43(5), pp.1028-1038. [46] Faigle, U., Grabisch, M., Jim´enez-Losada, A., and Ord´o˜nez, M., (2016), Games on concept lattices: Shapley value and core, Discret. Appl. Math., 198, pp.29-47. · Zbl 1334.91008 [47] Fern´andez, J.R., Gallego, I., Jim´enez-Losada, A., and Ord´o˜nez, M., (2017), Soft cooperation systems and games, Int. J of Gen. Syst., 47(3), pp.244-262. [48] Freisleben, B., and Kunkelmann, T., (1993), Combining fuzzy logic and neural networks to control an autonomous vehicle, [Proc. 1993] Sec. IEEE Intern. Conf. on Fuzzy Syst., vol.1, pp.321-326. [49] Fujii, S., Nakashima, T., and Ishibuchi, H., (2008), A study on constructing fuzzy systems for high-level decision making in a car racing game, 2008 IEEE Intern. Conf. Fuzzy Syst. (IEEE World Congr. Comp. Intell.) [50] Garagic, D., and Cruz, J., (2003), An approach to fuzzy noncooperative nash games, J. Optim. Theory Appl. 118(3), pp.475-491. · Zbl 1073.91002 [51] Garibaldi, J.M., (2019), The need for fuzzy AI, IEEE/CAA J. Autom. Sin., 6(3), pp.610-622. [52] Glorennec, P.Y., and Jouffe, L., (1997), Fuzzy Q-learning, Proc. 6th Intern. Fuzzy Syst. Conf., vol. 2, pp.659-662. [53] Goharimanesh, M., Mehrkish, A., and Janabi-Sharifi, F., (2020), A fuzzy reinforcement learning approach for continuum robot control, J. Int. & Robot. Syst., 100(3-4), pp.809-826. [54] Gr. Voskoglou, M., (2014), Assessing the players’ performance in the game of bridge: a fuzzy logic approach, Am. J. Appl. Math. Stat., 2(3), pp.115-120. · Zbl 1361.91003 [55] Guadarrama, S., and Vazquez, R., (2008), Tuning a fuzzy racing car by coevolution, 2008 3rd Intern. Workshop Gen. Evol. Syst., IEEE. [56] Hingston, P., (2009), The 2K BotPrize, 2009 IEEE Symp. Comp. Intell. Games, pp.1-1. [57] Holzinger, A., (2018), From Machine Learning to Explainable AI, 2018 World Symp. Digit. Intell. Syst. Mach. (DISA), IEEE. [58] H¨oppner, F., Klawonn, F., Kruse, R., and Runkler, T., (1999), Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition, Wiley & Sons. 300p. · Zbl 0944.65009 [59] Keller, J.M., Gray, M.R., and Givens, J.A., (1985), A fuzzy k-nearest neighbor algorithm, IEEE Trans. Syst., Man, Cyber., 4, pp.580-585. [60] Koulouriotis, D.E. et al., (2003), Effciently modeling and controlling complex dynamic systems using evolutionary fuzzy cognitive maps (invited paper), International Journal of Computational Cognition [61] Kruse, R. et al., (2016), Computational Intelligence, 2nd Edition. Texts in Computer Science. London: Springer-Verlag London, 564p. [62] Lakoff, G., (1987), Cognitive models and prototype theory. Emory symposia in cognition, 1. New York, NY, US: Cambridge University Press, pp.63-100. [63] Lara, C.A., Flores, J., Mitre-Hernandez, H., and Perez, H., (2018), Induction of Emotional States in Educational Video Games through a Fuzzy Control System, IEEE Trans. Affect. Comp., pp.1-12. [64] Larbani, M., (2009), Non cooperative fuzzy games in normal form: A survey, Fuzzy Sets Syst., 160(22), pp.3184-3210. · Zbl 1186.91023 [65] Lee, W.-J., Jhang, H.-J., Lee, S.-H., and Choi, S.-H., (2020), Forecasting winning rates in major league baseball based on fuzzy logic, J. Korean Inst. Intell. Syst., 30(5), pp.366-372. [66] Li, Y.J. et al., (2011), Apply different fuzzy integrals in unit selection problem of real time strategy game, 2011 IEEE Intern. Conf. Fuzzy Syst. Pp.170-177. [67] Li, Y., Ng, P.H.F., and Shiu, S.C.K., (2016), A fast evaluation method for RTS game strategy using fuzzy extreme learning machine, Nat. Comp., 15(3), pp.435-447. · Zbl 1415.68172 [68] Lyon, D., (2017), Bachelor Thesis: Exploring the Effectiveness of Adaptive Difficulty Procedural Content Generation in a Video Game and to Maximize Player Flow and Game Usability, PhD thesis. [69] Magerko, B., Dohogne, P., and Deleon, C., (2011), Employing Fuzzy Concept for Digital Improvisational Theatre, Proc. AAAI Conf. Artif. Intell. Interact. Digit. Entertain., 7(1). [70] Mareˇs, M., (2000), Fuzzy coalition structures, Fuzzy Sets Syst., 114(1), pp.23-33. · Zbl 0963.91005 [71] Mareˇs, M., and Vlach, M., (2001), Linear coalitional games and their fuzzy extensions, Int. J. Uncertain., Fuzziness and Knowl.-Based Syst., 9(3), pp.341-354. · Zbl 1113.91303 [72] Mateou, N., Andreou, A., and Stylianou, C., (2006), Evolutionary Multilayered Fuzzy Cognitive Maps: A Hybrid System Design to Handle Large-Scale, Complex, Real-World Problems, 2006 2nd Inter. Conf. Inf. Commun. Technol., vol. 1, pp.1663-1668. [73] McCrae, R.R., and John, O.P., (1992), An introduction to the five-factor model and its applications, J. Personal., 60(2), pp.175-215. [74] Mendez, J.I. et al., (2019), Framework for promoting social interaction and physical activity in elderly people using gamification and fuzzy logic strategy, 2019 IEEE Glob. Conf. Signal Inf. Process. [75] Michels, K., Kruse, R., Klawonn, F., and N¨urnberger, A., (2006), Fuzzy Control. Fundamentals, Stability and Design of Fuzzy Controllers, Springer Berlin Heidelberg, 402p. · Zbl 1099.93025 [76] Nakashima, T., Udo, M., and Ishibuchi, H., (2003), Implementation of fuzzy Q-learning for a soccer agent, 12th IEEE Intern. Conf. Fuzzy Syst., 2003. FUZZ ’03. vol. 1, [77] Nareyek, A., (2004), AI in computer games, ACM Queue, 1(10), pp.58-65. [78] Nash, J., (1951), Non-cooperative games, Ann. Math., 54(2), pp.286-295. · Zbl 0045.08202 [79] Neumann, J. von, and Morgenstern, O., (1947), Theory of Games and Economic Behavior, Princeton University Press, 776p. · Zbl 1241.91002 [80] Ng, P.H., Li, Y.J., and Shiu, S.C., (2011), Unit formation planning in RTS game by using potential field and fuzzy integral, IEEE Int. Conf. Fuzzy Syst., pp.178-184. [81] Ohsone, K., and Onisawa, T., (2008), Friendly partner system of poker game with facial expressions, 2008 IEEE Symp. Comp. Intell. Games, pp.95-102. [82] Onieva, E. et al., (2009), A modular parametric architecture for the TORCS racing engine, 2009 IEEE Symp. Comp. Intell. Games. [83] Onieva, E., Cardamone, L., Loiacono, D., and Lanzi, P.L., (2010), Overtaking opponents with blocking strategies using fuzzy logic, Proc. 2010 IEEE Conf. Comp. Intell. Games. [84] Onta˜n´on, S., (2021), microRTS Github Repository,https://github.com/santiontanon/microrts. [Online; accessed 06-January-2020]. [85] OpenAI et al., (2019), Dota 2 with Large Scale Deep Reinforcement Learning, 66p. [86] Ortony, A., Clore, G.L., and Collins, A., (1988), The Cognitive Structure of Emotions, Cambridge University Press, 207p. [87] Osone, K., and Onisawa, T., (2008), Cooperative partner system of imperfect information game, 2008 IEEE Conf. Soft Comp. Ind. Appl., pp.60-65. [88] Osone, K., Weiyi, G., and Onisawa, T., (2010), Human-agent communication in poker game, 2010 IEEE Intern. Conf. Syst., Man, Cyber., pp.857-864. [89] Perez, D., Recio, G., Saez, Y., and Isasi, P., (2009), Evolving a Fuzzy Controller for a Car Racing Competition, Proc. 5th Intern. Conf. Comp. Intell. Games, CIG’09. Milano, Italy: IEEE Press, pp.263-270. [90] Perez, L.J.F. et al., (2015), Dynamic Game Difficulty Balancing in Real Time Using Evolutionary Fuzzy Cognitive Maps, 14th Brazilian Symp. Comp. Games Digit. Entertain. (SBGames). [91] Ponce, P. et al., (2020), Tailored gamification and serious game framework based on fuzzy logic for saving energy in connected thermostats, J. Clean. Prod., 262. 121167. [92] Preuss, M., Kozakowski, D., Hagelb¨ack, J., and Trautmann, H., (2013), Reactive strategy choice in StarCraft by means of Fuzzy Control, 2013 IEEE Conf. Comp. Intell. in Games (CIG), pp.1-8. [93] Rai, A., (2019), Explainable AI: from black box to glass box, J. Acad. Mark. Sci., 48(1), pp.137-141. [94] Reyneri, L.M., (1997), An introduction to Fuzzy State Automata, Biological and Artificial Computation: From Neuroscience to Technology, Springer Berlin Heidelberg, pp.273-283. [95] Rosch, E., (1988), Principles of Categorization, Readings in Cognitive Science, Elsevier, pp.312-322. [96] Rotshtein, A.P., Posner, M., and Rakityanskaya, A.B., (2005), Football predictions based on a fuzzy model with genetic and neural tuning, Cyber. Syst. Anal., 41(4), pp.619-630. · Zbl 1125.62352 [97] Ruspini, E.H., Bezdek, J.C., and Keller, J.M., (2019), Fuzzy clustering: a historical perspective, IEEE Comp. Intell. Mag., 14(1), pp.45-55. [98] Salem, M., Mora, A.M., Merelo, J.J., and Garc´ıa-S´anchez, P., (2017), Driving in TORCS Using Modular Fuzzy Controllers, Applications of Evolutionary Computation, Springer International Publishing, pp.361-376. [99] Shapley, L.S., (1952), A Value for n-Person Games, Santa Monica, CA: RAND Corporation, 15p. · Zbl 0050.14404 [100] Sinclair, J., Hingston, P., and Masek, M., (2009), Exergame Development Using the Dual Flow Model, Proc. 6th Australasian Conf. Interact. Entertain. IE ’09. Sydney, Australia: Association for Computing Machinery. [101] Stensrud, B.S., and Gonzalez, A.J., (2008), Discovery of high-level behavior from observation of human performance in a strategic game, IEEE Trans. on Syst., Man, and Cyber., B (Cyber.), 38(3), pp.855-874. [102] Sugeno, M., (July 1985), An introductory survey of fuzzy control, Inf. Sci., 36(1-2), pp.59-83. · Zbl 0586.93053 [103] Supriyadi, M.D.B.S., Nugroho, S.M.S., and Hariadi, M., (2019), Fuzzy Coordinator based AI for Dynamic Difficulty Adjustment in Starcraft 2, 2019 Int. Conf. Artif. Intell. Inf. Technol. (ICAIIT). [104] Tan, A.-H., (2004), FALCON: a fusion architecture for learning, cognition, and navigation, 2004 IEEE Intern. Jt. Conf. Neural Netw. (IEEE Cat. No.04CH37541), vol. 4, pp.3297-3302. [105] Trawinski, K., (2010), A fuzzy classification system for prediction of the results of the basketball games, IEEE Intern. Conf. Fuzzy Syst. [106] Tsakonas, A., Dounias, G., Shtovba, S., and Vivdyuk, V., (2002), Soft Computing-Based Result Prediction of Football Games, The First Int. Conf. on Inductive Modelling (ICIM’2002), Lviv, Ukraine. [107] Tsurumi, M., Tanino, T., and Inuiguchi, M., (2001), A Shapley function on a class of cooperative fuzzy games, Eur. J. Oper. Res., 129(3), pp.596-618. · Zbl 1125.91313 [108] Verma, T., and Kumar, A., (2020), Fuzzy Solution Concepts for Non-cooperative Games, Springer International Publishing, 166p. · Zbl 1459.91002 [109] Vinyals, O. et al., (2019), Grandmaster level in StarCraft II using multi-agent reinforcement learning, Nat., 575(7782), pp.350-354. [110] Volna, E., (2017), Fuzzy-based decision strategy in real-time strategic games, AIP Conf. Proc. 1906. A. DOCKHORN, R. KRUSE: FUZZY MODELING IN GAME AI67 [111] Wang, D., Subagdja, B., Tan, A.H., and Ng, G.W., (2009), Creating human-like autonomous players in real-time first person shooter computer games, Proc. 21st Innov. Appl. Artif. Intell. Conf., IAAI-09, pp.173-178. [112] Wang, D., and Tan, A.-H., (2015), Creating autonomous adaptive agents in a real-time first-person shooter computer game, IEEE Trans. Comp. Intell. AI Games, 7(2), pp.123-138. [113] Wang, L. et al., (2020), Team recommendation using order-based fuzzy integral and NSGA-II in StarCraft, IEEE Access, 8, pp.59559-59570. [114] Warpefelt, H., (2016), The Non-Player Character : Exploring the believability of NPC presentation and behavior, PhD thesis. Stockholm University, Department of Computer and Systems Sciences, [115] Waveren, J. van, (2001), The Quake III Arena Bot, Delft University of Technology, pp.1-108. [116] Wu, Y., and Yang, J., (2019), On the integration of deep learning and fuzzy methods for aspectbased sentiment analysis, 8th Intern. Congr. Adv. Appl. Inf. (IIAI-AAI), pp.483-488. [117] Wymann, B. et al., (2014), Torcs, the open racing car simulator, v1.3.6, 5p. [118] Xu, L., Zhao, R., and Shu, T., (2005), Three Equilibrium Strategies for Two-Person Zero-Sum Game with Fuzzy Payoffs, Fuzzy Systems and Knowledge Discovery, Springer Berlin Heidelberg, pp.350-354. [119] Yang, W., Xie, X., and Peng, Y., (2019), Fuzzy theory based single belief state generation for partially observable real-time strategy games, IEEE Access, 7, pp.79320-79330. [120] Yu, X., and Zhang, Q., (2010), An extension of cooperative fuzzy games, Fuzzy Sets Syst., 161(11), pp.1614-1634. · Zbl 1189.91025 [121] Zadeh, L., (1965a), Fuzzy sets, Inf. Control, 8(3), pp.338-353. · Zbl 0139.24606 [122] Zadeh, L., (1965b), Fuzzy sets and systems, Syst. Theory. Microw. Res. Inst. Symp. Ser. XV, ed. by J. Fox, pp.29-37. [123] Zadeh, L., (1971), Fuzzy Languages and Their Relation to Human and Machine Intelligence, tech. rep. EECS Department, University of California, Berkeley. [124] Zadeh, L., (1996), The evolution of systems analysis and control: a personal perspective, IEEE Control Syst., 16(3), pp.95-98 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.