Gupta, Animesh; Rai, Vandana Binary relation for tripled fixed point theorem in metric spaces. (English) Zbl 1488.54135 Bol. Soc. Parana. Mat. (3) 39, No. 2, 9-26 (2021). MSC: 54H25 15A24 54E40 PDF BibTeX XML Cite \textit{A. Gupta} and \textit{V. Rai}, Bol. Soc. Parana. Mat. (3) 39, No. 2, 9--26 (2021; Zbl 1488.54135) Full Text: Link
Mishra, Lakshmi Narayan; Gupta, Animesh; Mishra, Vishnu Narayan Application of \(n\)-tupled fixed points of contractive type operators for Ulam-Hyers stability. (English) Zbl 1458.54044 Palest. J. Math. 10, No. 1, 349-372 (2021). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{L. N. Mishra} et al., Palest. J. Math. 10, No. 1, 349--372 (2021; Zbl 1458.54044) Full Text: Link
Deepmala; Jain, Manish; Mishra, Lakshmi Narayan; Mishra, Vishnu Narayan A note on the paper “Common coupled fixed point theorems for weakly compatible mappings in fuzzy metric spaces”. (English) Zbl 1427.54046 Int. J. Adv. Appl. Math. Mech. 5, No. 2, 51-52 (2017). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{Deepmala} et al., Int. J. Adv. Appl. Math. Mech. 5, No. 2, 51--52 (2017; Zbl 1427.54046) Full Text: Link
Gupta, Animesh Ulam-Hyers stability theorem by tripled fixed point theorem. (English) Zbl 1352.15019 Fasc. Math. 56, 77-97 (2016). MSC: 15A24 15A29 47H10 54H25 PDF BibTeX XML Cite \textit{A. Gupta}, Fasc. Math. 56, 77--97 (2016; Zbl 1352.15019) Full Text: DOI