Kumar, Kamlesh; Kumar, Jogendra; Pandey, Rajesh K. A fully finite difference scheme for time-fractional telegraph equation involving Atangana Baleanu Caputo fractional derivative. (English) Zbl 07549894 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 154, 12 p. (2022). MSC: 65Mxx 39-XX PDF BibTeX XML Cite \textit{K. Kumar} et al., Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 154, 12 p. (2022; Zbl 07549894) Full Text: DOI
Shivanian, Elyas; Jafarabadi, Ahmad Numerical investigation based on a local meshless radial point interpolation for solving coupled nonlinear reaction-diffusion system. (English) Zbl 1499.65579 Comput. Methods Differ. Equ. 9, No. 2, 358-374 (2021). MSC: 65M70 65M06 65N35 65D12 65D07 92E20 92C15 35Q92 PDF BibTeX XML Cite \textit{E. Shivanian} and \textit{A. Jafarabadi}, Comput. Methods Differ. Equ. 9, No. 2, 358--374 (2021; Zbl 1499.65579) Full Text: DOI
Ghehsareh, Hadi Roohani; Zabetzadeh, Sayyed Mahmood A meshless computational approach for solving two-dimensional inverse time-fractional diffusion problem with non-local boundary condition. (English) Zbl 1475.65104 Inverse Probl. Sci. Eng. 28, No. 12, 1773-1795 (2020). MSC: 65M32 65M60 65M70 65N30 65D12 60K50 35R30 26A33 35R11 PDF BibTeX XML Cite \textit{H. R. Ghehsareh} and \textit{S. M. Zabetzadeh}, Inverse Probl. Sci. Eng. 28, No. 12, 1773--1795 (2020; Zbl 1475.65104) Full Text: DOI
Shivanian, Elyas Pseudospectral meshless radial point Hermit interpolation versus pseudospectral meshless radial point interpolation. (English) Zbl 07336559 Int. J. Comput. Methods 17, No. 7, Article ID 1950023, 28 p. (2020). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{E. Shivanian}, Int. J. Comput. Methods 17, No. 7, Article ID 1950023, 28 p. (2020; Zbl 07336559) Full Text: DOI
Shivanian, Elyas; Kazemi, Ramin; Keshtkar, Mahdi Thermal analysis of longitudinal fin with temperature-dependent properties and internal heat generation by a novel intelligent computational approach using optimized Chebyshev polynomials. (English) Zbl 07048615 Int. J. Nonlinear Sci. Numer. Simul. 20, No. 2, 153-166 (2019). MSC: 34B15 34B60 PDF BibTeX XML Cite \textit{E. Shivanian} et al., Int. J. Nonlinear Sci. Numer. Simul. 20, No. 2, 153--166 (2019; Zbl 07048615) Full Text: DOI
Shivanian, Elyas Local radial basis function interpolation method to simulate 2D fractional-time convection-diffusion-reaction equations with error analysis. (English) Zbl 1370.65041 Numer. Methods Partial Differ. Equations 33, No. 3, 974-994 (2017). Reviewer: K. N. Shukla (Gurgaon) MSC: 65M06 35K57 35R11 65M70 65M15 65M12 PDF BibTeX XML Cite \textit{E. Shivanian}, Numer. Methods Partial Differ. Equations 33, No. 3, 974--994 (2017; Zbl 1370.65041) Full Text: DOI
Shivanian, Elyas; Jafarabadi, Ahmad An improved spectral meshless radial point interpolation for a class of time-dependent fractional integral equations: 2D fractional evolution equation. (English) Zbl 1417.65180 J. Comput. Appl. Math. 325, 18-33 (2017). MSC: 65M70 35R11 PDF BibTeX XML Cite \textit{E. Shivanian} and \textit{A. Jafarabadi}, J. Comput. Appl. Math. 325, 18--33 (2017; Zbl 1417.65180) Full Text: DOI