Awwal, Aliyu Muhammed; Kumam, Poom; Bala Abubakar, Auwal Spectral modified Polak-Ribiére-Polyak projection conjugate gradient method for solving monotone systems of nonlinear equations. (English) Zbl 1433.65109 Appl. Math. Comput. 362, Article ID 124514, 17 p. (2019). Summary: In this paper, we present a modification of Polak-Ribiére-Polyak (PRP) conjugate gradient method for solving system of monotone nonlinear equations which is a combination of spectral conjugate gradient method and the hyperplane projection technique. The method is based on two methods for unconstrained optimization proposed by Z. Wan et al. [Appl. Math. Lett. 24, No. 1, 16–22 (2011; Zbl 1208.49039)] and X. Sun [Int. J. Adv. Appl. Math. Mech. 2, No. 3, 51–59 (2015; Zbl 1359.90154)]. We obtain a new search direction by the use of a different formula for the conjugate gradient parameter. The search direction satisfies the sufficient descent condition and the global convergence of the method is established under some assumptions. Preliminary numerical comparison with some existing methods shows the efficiency of the proposed method. Cited in 6 Documents MSC: 65K05 Numerical mathematical programming methods 90C06 Large-scale problems in mathematical programming 90C56 Derivative-free methods and methods using generalized derivatives 65H10 Numerical computation of solutions to systems of equations 90C30 Nonlinear programming 90C53 Methods of quasi-Newton type 65K10 Numerical optimization and variational techniques Keywords:nonlinear monotone equations; conjugate gradient method; spectral gradient method; projection method Citations:Zbl 1208.49039; Zbl 1359.90154 Software:MCPLIB PDF BibTeX XML Cite \textit{A. M. Awwal} et al., Appl. Math. Comput. 362, Article ID 124514, 17 p. (2019; Zbl 1433.65109) Full Text: DOI References: [1] Al-Baali, M.; Spedicato, E.; Maggioni, F., Broyden’s quasi-Newton methods for a nonlinear system of equations and unconstrained optimization: a review and open problems, Optim. Methods Softw., 29, 5, 937-954 (2014) · Zbl 1308.90202 [2] Barzilai, J.; Borwein, J. M., Two-point step size gradient methods, IMA J. Numer. Anal., 8, 1, 141-148 (1988) · Zbl 0638.65055 [3] Bing, Y.; Lin, G., An efficient implementation of Merrill’s method for sparse or partially separable systems of nonlinear equations, SIAM J. Optim., 1, 2, 206-221 (1991) · Zbl 0754.65048 [4] Broyden, C. G., A class of methods for solving nonlinear simultaneous equations, Math. Comput., 19, 92, 577-593 (1965) · Zbl 0131.13905 [5] Cheng, W., A two-term PRP-based descent method, Numer. Funct. Anal. Optim., 28, 11-12, 1217-1230 (2007) · Zbl 1138.90028 [6] Cheng, W., A PRP type method for systems of monotone equations, Math. Comput. Modell., 50, 1-2, 15-20 (2009) · Zbl 1185.65088 [7] Cordero, A.; Torregrosa, J. R., Variants of Newton’s method for functions of several variables, Appl. Math. Comput., 183, 199-208 (2006) · Zbl 1123.65042 [8] Dai, Y.; Yuan, Y., A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10, 1, 177-182 (1999) · Zbl 0957.65061 [9] Dai, Z.; Wen, F., Another improved Wei-Yao-Liu nonlinear conjugate gradient method with sufficient descent property, Appl. Math. Comput., 218, 14, 7421-7430 (2012) · Zbl 1254.65074 [10] Dirkse, S. P.; Ferris, M. C., MCPLIB: a collection of nonlinear mixed complementarity problems, Optim. Methods Softw., 5, 4, 319-345 (1995) [11] Dolan, E. D.; Moré, J. J., Benchmarking optimization software with performance profiles, Math. Program., 91, 2, 201-213 (2002) · Zbl 1049.90004 [12] Feng, D.; Sun, M.; Wang, X., A family of conjugate gradient methods for large-scale nonlinear equations, J. Inequal. Appl., 2017, 1, 236 (2017) · Zbl 1371.90101 [13] Kelly, C. T., Iterative Methods for Linear and Nonlinear Equations (1995), SIAM [14] La Cruz, W.; Martínez, J. M.; Raydan, M., Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Math. Comput., 75, 255, 1429-1448 (2006) · Zbl 1122.65049 [15] La Cruz, W.; Raydan, M., Nonmonotone spectral methods for large-scale nonlinear systems, Optim. Methods Softw., 18, 5, 583-599 (2003) · Zbl 1069.65056 [16] Leong, W. J.; Hassan, M. A.; Yusuf, M. W., A matrix-free quasi-Newton method for solving large-scale nonlinear systems, Comput. Math. Appl., 62, 5, 2354-2363 (2011) · Zbl 1231.65091 [17] Li, D.; Wang, X., A modified fletcher-reeves-type derivative-free method for symmetric nonlinear equations, Numer. Algebra Control Optim, 1, 1, 71-82 (2011) · Zbl 1386.65143 [18] Li, M.; Qu, A., Some sufficient descent conjugate gradient methods and their global convergence, Comput. Appl. Math., 33, 2, 333-347 (2014) · Zbl 1307.90171 [19] Liu, J.; Li, S., Spectral DY-type projection method for nonlinear monotone systems of equations, J. Comput. Math., 33, 4, 341-355 (2015) · Zbl 1340.65099 [20] Meintjes, K.; Morgan, A. P., Chemical equilibrium systems as numerical test problems, ACM Trans. Math. Softw. TOMS, 16, 2, 143-151 (1990) · Zbl 0900.65153 [21] Mohammad, H.; Abubakar, A. B., A positive spectral gradient-like method for large-scale nonlinear monotone equations, Bull. Comput. Appl. Math., 5, 1, 99-115 (2017) · Zbl 1398.65105 [22] Ortega, J. M.; Rheinboldt, W. C., Iterative Solution of Nonlinear Equations in Several Variables, 30 (1970), SIAM · Zbl 0241.65046 [23] Solodov, M. V.; Svaiter, B. F., A globally convergent inexact Newton method for systems of monotone equations, Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, 355-369 (1998), Springer · Zbl 0928.65059 [24] Sun, X., A new spectral PRP conjugate gradient method with sufficient descent property, Int. J. Adv. Appl. Math. Mech., 2, 3, 51-59 (2015) · Zbl 1359.90154 [25] Wan, Z.; Yang, Z.; Wang, Y., New spectral PRP conjugate gradient method for unconstrained optimization, Appl. Math. Lett., 24, 1, 16-22 (2011) · Zbl 1208.49039 [26] Waziri, M. Y.; Leong, W. J.; Hassan, M. A.; Monsi, M., A new Newton’s method with diagonal jacobian approximation for systems of nonlinear equations, J. Math. Stat., 6, 3, 246-252 (2010) · Zbl 1205.65182 [27] Waziri, M. Y.; Sabiu, J., A derivative-free conjugate gradient method and its global convergence for solving symmetric nonlinear equations, Int. J. Math. Math. Sci., 2015, 1-8 (2015) [28] Wei, Z.; Li, G.; Qi, L., New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems, Appl. Math. Comput., 179, 2, 407-430 (2006) · Zbl 1106.65055 [29] Yuan, G.; Wei, Z.; Lu, X., Global convergence of BFGS and PRP methods under a modified weak wolfe-powell line search, Appl. Math. Modell., 47, 811-825 (2017) · Zbl 1446.65031 [30] Zhang, L., An improved Wei-Yao-Liu nonlinear conjugate gradient method for optimization computation, Appl. Math. Comput., 215, 6, 2269-2274 (2009) · Zbl 1181.65089 [31] Zhang, L.; Zhou, W., Spectral gradient projection method for solving nonlinear monotone equations, J. Comput. Appl. Math., 196, 2, 478-484 (2006) · Zbl 1128.65034 [32] Zhang, L.; Zhou, W.; Li, D. H., Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search, Numer. Math., 104, 4, 561-572 (2006) · Zbl 1103.65074 [33] Zhang, Y.; Zheng, H.; Zhang, C., Global convergence of a modified PRP conjugate gradient method, Proc. Eng., 31, 986-995 (2012) [34] Zhao, Y. B.; Li, D., Monotonicity of fixed point and normal mappings associated with variational inequality and its application, SIAM J. Optim., 11, 4, 962-973 (2001) · Zbl 1010.90084 [35] Zhou, G.; Toh, K. C., Superlinear convergence of a Newton-type algorithm for monotone equations, J. Optim. Theory Appl., 125, 1, 205-221 (2005) · Zbl 1114.65055 [36] Zhou, W.; Li, D., Limited memory BFGS method for nonlinear monotone equations, J. Comput. Math., 89-96 (2007) [37] Zhou, W.; Shen, D., An inexact PRP conjugate gradient method for symmetric nonlinear equations, Numer. Funct. Anal. Optim., 35, 3, 370-388 (2014) · Zbl 1320.90087 [38] Zhou, W.; Li, D., A globally convergent BFGS method for nonlinear monotone equations without any merit functions, Math. Comput., 77, 264, 2231-2240 (2008) · Zbl 1203.90180 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.