## Thermal diffusion and diffusion thermo effects on unsteady MHD fluid flow past a moving vertical plate embedded in porous medium in the presence of Hall current and rotating system.(English)Zbl 1426.76679

Summary: In this research paper, numerical study of unsteady magnetohydrodynamic natural convective heat and mass transfer of a viscous, rotating fluid, electrically conducting and incompressible fluid flow past an impulsively moving vertical plate embedded in porous medium in the presence of ramped temperature, thermal radiation, hall current, thermal diffusion and diffusion thermo is investigated. The fundamental governing dimensionless coupled boundary layer partial differential equations are solved by an efficient Element Free Galerkin Method (EFGM). Computations were performed for a wide range of some important governing flow parameters viz., Hall current, rotation, thermal diffusion (Soret) and diffusion thermo (Dufour). The effects of these flow parameters on primary and secondary velocity, temperature and concentration fields for externally heating and cooling of the plate are shown graphically. Finally, the effects of these flow parameters on the rate of heat, mass transfer and shear stress coefficients at the wall are prepared through tabular forms for heating and cooling of the plate. Also, these are all discussed for ramped temperature and isothermal plates. We have shown that some results are in good agreement with earlier reported studies.

### MSC:

 76R50 Diffusion 76W05 Magnetohydrodynamics and electrohydrodynamics 76S05 Flows in porous media; filtration; seepage 76U05 General theory of rotating fluids 80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text:

### References:

 [1] Hall, Edwin, On a new action of the magnet on electric currents, Amer. J. Math., 2, 287-292 (1879) · JFM 11.0767.01 [2] Singh, Ajay Kumar; Singh, N. P.; Singh, Usha; Singh, Hukum, Convective flow past an accelerated porous plate in rotating system in presence of magnetic field, Int. J. Heat Mass Transfer, 52, 3390-3395 (2009) · Zbl 1167.80365 [3] Mbeledogu, I. U.; Ogulu, A., Heat and mass transfer of an unsteady MHD natural convection flow of a rotating fluid past a vertical porous flat plate in the presence of radiative heat transfer, Int. J. Heat Mass Transfer, 50, 1902-1908 (2007) · Zbl 1122.76095 [4] Abuga, J. G.; Kinyanjui, M.; Sigey, J. K., An investigation of the effect of Hall currents and rotational parameter on dissipative fluid flow past a vertical semi-infinite plate, J. Eng. Tech. Res., 3, 314-320 (2011) [5] Jain, N. C.; Singh, H., Hall and thermal radiation effects on an unsteady rotating free convection slip flow along a porous vertical moving plate, Int. J. Appl. Mech. Eng., 17, 53-70 (2012) [6] Ahmed, N.; Dutta, M., Transient mass transfer flow past an impulsively started infinite vertical plate with ramped plate velocity and ramped temperature, Int. J. Physical Sci., 8, 254-263 (2013) [7] Seth, G. S.; Sarkar, S.; Hussain, S. M., Effects of Hall current, radiation and rotation on natural convection heat and mass transfer flow past a moving vertical plate, Ain Shams Eng., 5, 489-503 (2014) [8] Chamkha, A. J.; Mansour, M. A.; Aly, A., Unsteady MHD free convective heat and mass transfer from a vertical porous plate with Hall current, thermal radiation and chemical reaction effects, Internat. J. Numer. Methods Fluids (2009) · Zbl 1429.76118 [9] Sivaiah, S.; Srinivasa Raju, R., Finite element solution of heat and mass transfer flow with hall current, heat source and viscous dissipation, Appl. Math. Mech., 34, 559-570 (2013) · Zbl 1376.76026 [10] Sheri, Siva Reddy; Srinivasa Raju, R., Transient MHD free convective flow past an infinite vertical plate embedded in a porous medium with viscous dissipation, Meccanica (2015) · Zbl 1359.76344 [11] Anand Rao, J.; Srinivasa Raju, R.; Sivaiah, S., Finite Element Solution of MHD transient flow past an impulsively started infinite horizontal porous plate in a rotating fluid with Hall current, J. Appl. Fluid Mech., 5, 105-112 (2012) [12] Anand Rao, J.; Srinivasa Raju, R.; Sivaiah, S., Finite Element Solution of heat and mass transfer in MHD Flow of a viscous fluid past a vertical plate under oscillatory suction velocity, J. Appl. Fluid Mech., 5, 1-10 (2012) [13] Ramana Murthy, M. V.; Srinivasa Raju, R.; Anand Rao, J., Heat and Mass transfer effects on MHD natural convective flow past an infinite vertical porous plate with thermal radiation and Hall Current, Procedia Eng. J., 127, 1330-1337 (2015) [14] Jithender Reddy, G.; Rao, J. A.; Srinivasa Raju, R., Chemical reaction and radiation effects on MHD free convection from an impulsively started infinite vertical plate with viscous dissipation, Int. J. Adv. Appl. Math. Mech., 2, 3, 164-176 (2015) · Zbl 1359.76337 [15] Anand Rao, J.; Jithender Reddy, G.; Srinivasa Raju, R., Finite element study of an unsteady MHD free convection Couette flow with viscous Dissipation, Glob. J. Pure Appl. Math., 11, 2, 65-69 (2015) [16] Srinivasa Raju, R.; Jithender Reddy, G.; Anand Rao, J.; Manideep, P., Application of FEM to free convective flow of Water near $$4 \sim ° C$$ past a vertical moving plate embedded in porous medium in presence of magnetic field, Glob. J. Pure Appl. Math., 11, 2, 130-134 (2015) [17] Sheikholeslami, M.; Rashidi, M. M., Effect of space dependent magnetic field on free convection of Fe3O4-water nanofluid, J. Taiwan Inst. Chem. Eng., 56, 6-15 (2015) [18] Sheikholeslami, M.; Rashidi, M. M., Ferrofluid heat transfer treatment in the presence of variable magnetic field, Eur. Phys. J. Plus, 130, 115 (2015) [19] Rashidi, M. M.; Nasiri, Mohammad; Khezerloo, Marzieh, Najib laraqi numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls, J. Magn. Magn. Mater., 401, 159-168 (2016) [20] Rashidi, M. M.; Erfani, E., Analytical method for solving steady MHD convective and slip flow due to a rotating disk with viscous dissipation and ohmic heating, Eng. Comput., 29, 6, 562-579 (2012) [21] Alam, M. S.; Rahman, M. M., Dufour and soret effects on mixed convection flow past a vertical porous flat plate with variable suction, Nonlinear Anal. Model. Control, 11, 3-12 (2006) · Zbl 1109.76057 [22] El-Arabawy, H. A.M., Soret and dufour effects on natural convection flow past a vertical surface in a porous medium with variable surface temperature, J. Math. Stat., 5, 190-198 (2009) · Zbl 1423.80018 [23] Kafoussias, N. G.; Williams, E. W., Thermal-diffusion and diffusion-thermo effects on mixed free-forced convective and mass transfer boundary layer flow with temperature dependent viscosity, Internat. J. Engrg. Sci., 33, 1369-1384 (1995) · Zbl 0899.76325 [24] Eldabe, Nabil; Zeid, Mahmoud Abu, Thermal Diffusion and Diffusion Thermo effects on the viscous fluid flow with heat and mass transfer through porous medium over a shrinking sheet, J. Appl. Math., 2013 (2013) · Zbl 1266.76021 [25] Srinivas, S.; Subramanyam Reddy, A.; Ramamohan, T. R.; Shukla, Anant Kant, Thermal-diffusion and diffusion-thermo effects on MHD flow of viscous fluid between expanding or contracting rotating porous disks with viscous dissipation, J. Egyptian Math. Soc., 24, 1, 101-107 (2016) · Zbl 1332.76017 [26] Srinivasacharya, D.; RamReddy, Ch., Soret and Dufour effects on mixed convection from an exponentially stretching surface, Int. J. Nonlinear Sci., 12, 60-68 (2011) · Zbl 1235.35228 [27] Srinivasacharya, D.; Ram Reddy, Ch.; Pranitha, J.; Postelnicu, A., Soret and dufour effects on non-darcy free convection in a power-law fluid in the presence of magnetic field and stratification, Heat Transfer-Asian Res., 43, 592-606 (2014) [28] Srinivasacharya, D.; Mallikarjuna, B.; Bhuvanavijaya, R., Soret and dufour effects on mixed convection along a wavy surface in a porous medium with variable properties, Ain Shams Eng. J., 6, 553-564 (2015) · Zbl 1394.76133 [29] RamReddy, Ch.; Murthy, P. V.S. N.; Chamkha, A. J.; Rashad, A. M., Soret effect on mixed convection flow in a nanofluid under convective boundary condition, Int. J. Heat Mass Transfer, 64, 384-392 (2013) [30] Jithender Reddy, G.; Srinivasa Raju, R.; Sheri, Siva Reddy, Finite element analysis of soret and radiation effects on transient mhd free convection from an impulsively started infinite vertical plate with heat absorption, Int. J. Math. Arch., 5, 211-220 (2014) [31] Ahmed, A. K.; Sibanda, P., On A linearization method for MHD flow past a rotating disk in porous medium with cross-diffusion and hall effects, J. Porous Media, 16, 1011-1024 (2013) [32] Srinivasa Raju, R., Combined influence of thermal diffusion and diffusion thermo on unsteady hydromagnetic free convective fluid flow past an infinite vertical porous plate in presence of chemical reaction, J. Inst. Eng. (India): Series C, 1-11 (2016) [33] Srinivasa Raju, R.; Mahesh Reddy, B.; Rashidi, M. M.; Gorla, R. S.R., Application of finite element method to unsteady mhd free convection flow past a vertically inclined porous plate including thermal diffusion and diffusion thermo effects, J. Porous Media (2016), in press [34] Srinivasa Raju, R.; Sudhakar, K.; Rangamma, M., The effects of thermal radiation and Heat source on an unsteady MHD free convection flow past an infinite vertical plate with thermal-diffusion and diffusion-thermo, J. Inst. Eng. (India): Series C, 94, 175-186 (2013) [35] Sheri, Siva Reddy; Srinivasa Raju, R., Soret effect on unsteady MHD free convective flow past a semi-infinite vertical plate in the presence viscous dissipation, Int. J. Comput. Methods Eng. Sci. Mech., 1, 6, 132-141 (2015) [36] Abdelraheem, M. A.; Mansour, M. A.; Chamkha, A. J., Effects of soret and dufour numbers on free convection over isothermal and adiabatic stretching surfaces embedded in porous media, J. Porous Media, 14, 67-72 (2011) [37] Ahmed, A. K.; Sibanda, P., Effect of temperature-dependent viscosity on MHD mixed convective flow from an exponentially stretching surface in porous media with cross-diffusion, Spec. Top. Rev. Porous Media: Int. J., 5, 157-170 (2014) [38] Cramer, K. R.; Pai, S. I., Magneto Fluid Dynamics for Engineers and Applied Physicists (1973), McGraw Hill Book Company: McGraw Hill Book Company NY [39] Sparrow, E. M.; Cess, R. D., Radiation Heat Transfer (1966), Brooks/Cole: Brooks/Cole Belmont, Calif. · Zbl 0102.41201 [40] Belytschko, T.; Lu, Y. Y.; Gu, L., Element free Galerkin method, Internat. J. Numer. Methods Engrg., 37, 229-256 (1994) · Zbl 0796.73077 [41] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing Kernel particle Method, Internat. J. Numer. Methods Engrg., 20, 1081-1106 (1995) · Zbl 0881.76072 [42] Onate, E. S.; Idelsohn, O. C.; Zienkiewicz, R. L.; Taylors, A finite point method in computational mechanics. Application to convective transport and fluid flow, Internat. J. Numer. Methods Engrg., 39, 12, 3839-3967 (1996) · Zbl 0884.76068 [43] Duarte, C. A.; Oden, J. T., H-p clouds an h-p meshless method, Numer. Methods Partial Differential Equations, 1-34 (1996) · Zbl 0869.65069 [44] Belytschko, T.; Kroangauz, Y.; Fleming, M.; Organ, D.; Lui, W. K., Meshless Methods: An overview and recent developments, Comput. Methods Appl. Mech. Eng., 139, 3-47 (1996) · Zbl 0891.73075 [45] Sharma, Rajesh; Bhargava, R.; Bhargava, Peeyush, A numerical solution of unsteady MHD convection heat and mass transfer past a semi-infinite vertical porous moving plate using element free Galerkin method, Comput. Mater. Sci., 48, 3, 537-543 (2010) [46] Staroszczyk, Ryszard, Application of an element-free Galerkin method to water wave propagation problems, Arch. Hydro Eng. Environ. Mech., 60, 87-105 (2014) [47] Singh, Sonam; Bhargava, Rama, Numerical simulation of a phase transition problem with natural convection using hybrid FEM/EFGM technique, Internat. J. Numer. Methods Heat Fluid Flow, 25, 3, 570-592 (2015) · Zbl 1356.80050 [48] Sharma, Rajesh; Bhargav, R., Numerical simulation of MHD Hiemenz flow of a micropolar fluid towards a nonlinear stretching surface through a porous medium, Int. J. Comput. Methods Eng. Sci. Mech., 16, 4, 234-245 (2015) [49] Srinivasa Raju, R.; Jithender Reddy, G.; Anand Rao, J.; Rashidi, M. M.; Gorla, Rama Subba Reddy, Analytical and numerical study of unsteady MHD free convection flow over an exponentially moving vertical plate with heat absorption, Int. J. Therm. Sci., 107, 303-315 (2016) [50] Singh, A.; Singh, I. V.; Prakash, R., Numerical analysis of fluid squeezed between two parallel plates by meshless method, Comput. & Fluids, 36, 1460-1480 (2007) · Zbl 1194.76217 [51] Singh, I. V., A numerical solution of composite heat transfer problems using meshless method, Int. J. Heat Mass Transfer, 47, 2123-2138 (2004) · Zbl 1050.80006 [52] Zhu, T.; Atluri, S. N., A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free galerkin method, Comput. Mech., 21, 211-222 (1998) · Zbl 0947.74080 [53] Smith, G. D., Numerical Solutions of Partial Differential Equations-Finite Difference Methods (1985), Oxford University Press: Oxford University Press New York · Zbl 0576.65089 [54] Warner, C. Y.; Arpaci, V. S., An experimental investigation of turbulent natural convection in air at low pressure along a vertical heated flat plat, Int. J. Heat Mass Transfer, 11, 397-406 (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.