Dubey, Ved Prakash; Singh, Jagdev; Alshehri, Ahmed M.; Dubey, Sarvesh; Kumar, Devendra An efficient analytical scheme with convergence analysis for computational study of local fractional Schrödinger equations. (English) Zbl 07487731 Math. Comput. Simul. 196, 296-318 (2022). MSC: 35R11 35Q55 PDFBibTeX XMLCite \textit{V. P. Dubey} et al., Math. Comput. Simul. 196, 296--318 (2022; Zbl 07487731) Full Text: DOI
Dubey, Shweta; Chakraverty, S. Homotopy perturbation method for solving fuzzy fractional heat-conduction equation. (English) Zbl 1480.35403 Allahviranloo, Tofigh (ed.) et al., Advances in fuzzy integral and differential equations. Cham: Springer. Stud. Fuzziness Soft Comput. 412, 159-169 (2022). MSC: 35R13 35R11 35K05 35K15 PDFBibTeX XMLCite \textit{S. Dubey} and \textit{S. Chakraverty}, Stud. Fuzziness Soft Comput. 412, 159--169 (2022; Zbl 1480.35403) Full Text: DOI
Dubey, Ved Prakash; Singh, Jagdev; Alshehri, Ahmed M.; Dubey, Sarvesh; Kumar, Devendra A comparative analysis of two computational schemes for solving local fractional Laplace equations. (English) Zbl 1511.65142 Math. Methods Appl. Sci. 44, No. 17, 13540-13559 (2021). MSC: 65N99 35A22 35J15 26A33 35R11 PDFBibTeX XMLCite \textit{V. P. Dubey} et al., Math. Methods Appl. Sci. 44, No. 17, 13540--13559 (2021; Zbl 1511.65142) Full Text: DOI
Ziane, Djelloul; Cherif, Mountassir Hamdi; Cattani, Carlo; Belghaba, Kacem Yang-Laplace decomposition method for nonlinear system of local fractional partial differential equations. (English) Zbl 1524.49038 Appl. Math. Nonlinear Sci. 4, No. 2, 489-502 (2019). MSC: 49K20 35R11 PDFBibTeX XMLCite \textit{D. Ziane} et al., Appl. Math. Nonlinear Sci. 4, No. 2, 489--502 (2019; Zbl 1524.49038) Full Text: DOI
Maitama, Shehu; Zhao, Weidong Local fractional Laplace homotopy analysis method for solving non-differentiable wave equations on Cantor sets. (English) Zbl 1463.65339 Comput. Appl. Math. 38, No. 2, Paper No. 65, 22 p. (2019). MSC: 65M99 26A33 35R11 68W30 PDFBibTeX XMLCite \textit{S. Maitama} and \textit{W. Zhao}, Comput. Appl. Math. 38, No. 2, Paper No. 65, 22 p. (2019; Zbl 1463.65339) Full Text: DOI
Maitama, Shehu; Zhao, Weidong Local fractional homotopy analysis method for solving non-differentiable problems on Cantor sets. (English) Zbl 1459.34033 Adv. Difference Equ. 2019, Paper No. 127, 22 p. (2019). MSC: 34A08 65H20 26A33 PDFBibTeX XMLCite \textit{S. Maitama} and \textit{W. Zhao}, Adv. Difference Equ. 2019, Paper No. 127, 22 p. (2019; Zbl 1459.34033) Full Text: DOI OA License
Jassim, Hassan Kamil The approximate solutions of three-dimensional diffusion and wave equations within local fractional derivative operator. (English) Zbl 1470.35395 Abstr. Appl. Anal. 2016, Article ID 2913539, 5 p. (2016). MSC: 35R11 PDFBibTeX XMLCite \textit{H. K. Jassim}, Abstr. Appl. Anal. 2016, Article ID 2913539, 5 p. (2016; Zbl 1470.35395) Full Text: DOI OA License