Iqbal, Naveed; Albalahi, Abeer M.; Abdo, Mohammed S.; Mohammed, Wael W. Analytical analysis of fractional-order Newell-Whitehead-Segel equation: a modified homotopy perturbation transform method. (English) Zbl 1495.35192 J. Funct. Spaces 2022, Article ID 3298472, 10 p. (2022). MSC: 35R11 35A22 PDF BibTeX XML Cite \textit{N. Iqbal} et al., J. Funct. Spaces 2022, Article ID 3298472, 10 p. (2022; Zbl 1495.35192) Full Text: DOI OpenURL
Alkhezi, Yousuf; Shah, Nehad Ali; Ntwiga, Davis Bundi Analytical fuzzy analysis of a fractional-order Newell-Whitehead-Segel model with Mittag-Leffler kernel. (English) Zbl 1487.35431 J. Funct. Spaces 2022, Article ID 2785379, 12 p. (2022). MSC: 35R13 35R11 35A22 PDF BibTeX XML Cite \textit{Y. Alkhezi} et al., J. Funct. Spaces 2022, Article ID 2785379, 12 p. (2022; Zbl 1487.35431) Full Text: DOI OpenURL
Ayata, Muammer; Özkan, Ozan A new application of conformable Laplace decomposition method for fractional Newell-Whitehead-Segel equation. (English) Zbl 1484.35373 AIMS Math. 5, No. 6, 7402-7412 (2020). MSC: 35R11 26A24 PDF BibTeX XML Cite \textit{M. Ayata} and \textit{O. Özkan}, AIMS Math. 5, No. 6, 7402--7412 (2020; Zbl 1484.35373) Full Text: DOI OpenURL
Hilal, Nayrouz; Injrou, Sami; Karroum, Ramez Exponential finite difference methods for solving Newell-Whitehead-Segel equation. (English) Zbl 1442.65160 Arab. J. Math. 9, No. 2, 367-379 (2020). MSC: 65M06 65H10 65M12 65M15 35Q53 PDF BibTeX XML Cite \textit{N. Hilal} et al., Arab. J. Math. 9, No. 2, 367--379 (2020; Zbl 1442.65160) Full Text: DOI OpenURL
Jassim, Hassan Kamil; Mohammed, Mayada Gassab; Khafif, Saad Abdul Hussain The approximate solutions of time-fractional Burger’s and coupled time-fractional Burger’s equations. (English) Zbl 1465.65112 Int. J. Adv. Appl. Math. Mech. 6, No. 4, 64-70 (2019). MSC: 65M99 PDF BibTeX XML Cite \textit{H. K. Jassim} et al., Int. J. Adv. Appl. Math. Mech. 6, No. 4, 64--70 (2019; Zbl 1465.65112) Full Text: Link OpenURL
Meenakshi, M. V. Sethu; Athisayanathan, S.; Chinnathambi, V.; Rajasekar, S. Homoclinic bifurcation in a parametrically driven nonlinearly damped Duffing-Van der Pol oscillator. (Homoclinic bifurcation in a parametrically driven nonlinearly damped Duffing-vander Pol oscillator.) (English) Zbl 1481.34050 Int. J. Adv. Appl. Math. Mech. 6, No. 1, 10-20 (2018). MSC: 34C15 34C23 34C37 34C28 37C60 70K40 70K28 PDF BibTeX XML Cite \textit{M. V. S. Meenakshi} et al., Int. J. Adv. Appl. Math. Mech. 6, No. 1, 10--20 (2018; Zbl 1481.34050) Full Text: Link OpenURL
Chang, Chih-Wen; Liu, Chein-Shan; Chang, Jiang-Ren; Chen, Han-Taw A simple spatial integration scheme for solving Cauchy problems of non-linear evolution equations. (English) Zbl 1398.65233 Inverse Probl. Sci. Eng. 25, No. 11, 1653-1675 (2017). MSC: 65M32 PDF BibTeX XML Cite \textit{C.-W. Chang} et al., Inverse Probl. Sci. Eng. 25, No. 11, 1653--1675 (2017; Zbl 1398.65233) Full Text: DOI OpenURL