Ruelle zeta functions for finite digraphs. (English) Zbl 1446.05039

Summary: Three types of expressions for combinatorial zeta functions are considered. We investigate conditions for reformulating the exponential expression to the Euler product expression, and the Euler product expression to the determinant expression of Hashimoto type. The existence of the determinant expression of Hashimoto type enables to unify those zetas within a single framework, that is, the Ruelle zeta functions for quasi-finite dynamical systems constructed on finite digraphs, which we call the combinatorial zeta functions.


05C20 Directed graphs (digraphs), tournaments
11M06 \(\zeta (s)\) and \(L(s, \chi)\)
Full Text: DOI


[1] Artin, M.; Mazur, B., On periodic points, Ann. Math., 81, 82-99 (1965) · Zbl 0127.13401
[2] Bartholdi, L., Counting paths in graphs, Enseign. Math., 45, 83-131 (1999) · Zbl 0961.05032
[3] Bass, H., The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math., 3, 83-131 (1992)
[4] Bowen, R.; Lanford, O., Zeta functions of restrictions of the shift transformation, Proc. Symp. Pure Math., 14, 43-50 (1970) · Zbl 0211.56501
[5] Choe, Y.; Kwak, J. H.; Park, Y. S.; Sato, I., Bartholdi zeta and L-functions of weight digraphs, their coverings and products, Adv. Math., 213, 865-886 (2007) · Zbl 1118.05060
[6] Emms, D.; Hancock, E.; Severini, S.; Wilson, R., A matrix representation of graphs and its spectrum as a graph invariant, Electron. J. Comb., 13 (2006) · Zbl 1099.05082
[7] Emms, D.; Hancock, E.; Severini, S.; Wilson, R., Coined quantum walks lift the cospectrality of graphs and trees, Pattern Recognit., 42, 1988-2002 (2006) · Zbl 1177.68169
[8] Foata, D.; Zeilberger, D., A combinatorial proof of Bass’s evaluations of the Ihara-Selberg zeta function for graphs, Trans. Am. Math. Soc., 355, 2257-2274 (1999) · Zbl 0921.05025
[9] Hashimoto, K.-i., Zeta Functions of Finite Graphs and Representation of p-Adic Groups, Adv. Stud. Pure. Math., vol. 15, 211-280 (1989), Academic Press: Academic Press New York · Zbl 0709.22005
[10] Hashimoto, K.-i., On the zeta- and L-functions of finite graphs, Internat. J. Math., 1, 381-396 (1990) · Zbl 0734.14008
[11] Hattori, Y.; Morita, H., Ruelle zeta functions for finite dynamical systems and Koyama-Nakajima’s L-functions, Proc. Jpn. Acad., 92, 107-111 (2016) · Zbl 1412.11117
[12] Higuchi, Y.; Konno, N.; Sato, I.; Segawa, E., A note on the discrete-time evolutions of quantum walk on a graph, J. Math-for-Ind., 5B, 103-109 (2013) · Zbl 1301.81066
[13] Higuchi, Y.; Konno, N.; Sato, I.; Segawa, E., A remark on zeta functions of finite graphs via quantum walks, Pac. J. Math. Ind., 6, Article 9 pp. (2014) · Zbl 1326.81108
[14] Hoffman, J. W., Remarks on the zeta functions of a graph, Dynamical Systems and Differential Equations. Dynamical Systems and Differential Equations, Discrete Contin. Dyn. Syst., suppl., 413-422 (2003) · Zbl 1174.11391
[15] Ihara, Y., On discrete subgroup of the two by two projective linear group over p-adic fields, J. Math. Soc. Jpn., 18, 219-235 (1966) · Zbl 0158.27702
[16] Konno, N.; Sato, I., On the relation between quantum walks and zeta functions, Quantum Inf. Process., 11, 341-349 (2012) · Zbl 1241.81045
[17] Konno, N.; Sato, I.; Segawa, E., Phase measurement of quantum walks: application to structure theorem of the positive support of the Grover walk, Electron. J. Comb., 26, Article P2.26 pp. (2019) · Zbl 1414.81145
[18] Kotani, M.; Sunada, T., Zeta functions of finite graphs, J. Math. Sci. Tokyo, 7, 7-25 (2000) · Zbl 0978.05051
[19] Koyama, S.; Nakajima, S., Zeta functions of generalized permutations with application to their factorization formulas, Proc. Jpn. Acad., 88, 115-120 (2012) · Zbl 1275.11126
[20] Lothaire, M., Combinatorics of Words (1983), Addison-Wesley · Zbl 0514.20045
[21] Mizuno, H.; Sato, I., Bartholdi zeta functions of graphs coverings, J. Comb. Theory, Ser. B, 89, 27-41 (2003) · Zbl 1023.05110
[22] Mizuno, H.; Sato, I., Bartholdi zeta functions of digraphs, Eur. J. Comb., 24, 947-954 (2003) · Zbl 1029.05098
[23] Mizuno, H.; Sato, I., The weighted zeta functions for graphs, J. Comb. Theory, Ser. B, 91, 169-183 (2004) · Zbl 1048.05044
[24] Northshield, S., Two proofs of Ihara’s theorem, (Emerging Applications of Number Theory. Emerging Applications of Number Theory, IMA Volumes in Math. Appl., vol. 109 (1999), Springer), 469-478 · Zbl 0983.11054
[25] Ruelle, D., Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval (1994), Amer. Math. Soc.: Amer. Math. Soc. Providence · Zbl 0805.58006
[26] Sato, I., A new Bartholdi zeta function of a graph, Int. J. Algebra, 1, 269-281 (2007) · Zbl 1126.05070
[27] Serre, J.-P., Trees (1980), Springer-Verlag: Springer-Verlag New York · Zbl 0548.20018
[28] Shephard, G.; Todd, J., Finite unitary reflection groups, Can. J. Math., 6, 274-304 (1954) · Zbl 0055.14305
[29] Stark, H.; Terras, A., Zeta functions of finite graphs and coverings, Adv. Math., 121, 124-165 (1996) · Zbl 0874.11064
[30] Storm, C., Some properties of graphs determined by edge zeta functions, Linear Algebra Appl., 434, 1285-1294 (2011) · Zbl 1204.05095
[31] Sunada, T., L-Functions in Geometry and Some Applications, Lecture Note in Math., vol. 1201, 266-284 (1988), Springer-Verlag: Springer-Verlag New York · Zbl 0605.58046
[32] Terras, A., Zeta Functions of Graphs - A Stroll Through the Garden (2011), Cambridge University Press · Zbl 1206.05003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.